Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 19:15:1365530.
doi: 10.3389/fphys.2024.1365530. eCollection 2024.

Does a single session of transcranial direct current stimulation enhance both physical and psychological performance in national- or international-level athletes? A systematic review

Affiliations

Does a single session of transcranial direct current stimulation enhance both physical and psychological performance in national- or international-level athletes? A systematic review

Ying Yu et al. Front Physiol. .

Abstract

Some studies showed that a single session of transcranial direct current stimulation (tDCS) has the potential of modulating motor performance in healthy and athletes. To our knowledge, previously published systematic reviews have neither comprehensively investigated the effects of tDCS on athletic performance in both physical and psychological parameters nor investigated the effects of tDCS on high-level athletes. We examined all available research testing a single session of tDCS on strength, endurance, sport-specific performance, emotional states and cognitive performance for better application in competition and pre-competition trainings of national- or international-level athletes. A systematic search was conducted in PubMed, Web of Science, EBSCO, Embase, and Scopus up until to June 2023. Studies were eligible when participants had sports experience at a minimum of state and national level competitions, underwent a single session of tDCS without additional interventions, and received either sham tDCS or no interventions in the control groups. A total of 20 experimental studies (224 participants) were included from 18 articles. The results showed that a single tDCS session improved both physical and psychological parameters in 12 out of the 18 studies. Of these, six refer to the application of tDCS on the motor system (motor cortex, premotor cortex, cerebellum), five on dorsolateral prefrontal cortex and two on temporal cortex. The most sensitive to tDCS are strength, endurance, and emotional states, improved in 67%, 75%, and 75% of studies, respectively. Less than half of the studies showed improvement in sport-specific tasks (40%) and cognitive performance (33%). We suggest that tDCS is an effective tool that can be applied to competition and pre-competition training to improve athletic performance in national- or international-level athletes. Further research would explore various parameters (type of sports, brain regions, stimulation protocol, athlete level, and test tasks) and neural mechanistic studies in improving efficacy of tDCS interventions. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022326989, identifier CRD42022326989.

Keywords: efficacy; high-level athletes; noninvasive brain stimulation; physical performance; psychological performance.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
Selection of studies.
FIGURE 2
FIGURE 2
Quality and risk-of-bias assessment. Risk of bias graph (A): review authors’ judgments about each risk of bias item presented as percentages across all included studies; and risk of bias summary (B): review authors’ judgments about each risk of bias item for each included study.
FIGURE 3
FIGURE 3
Visualization of stimulated time, site, current intensity and performance in the analyzed studies. The color bars represent athletic performance involved in analyzed studies.

Similar articles

Cited by

References

    1. Alix-Fages C., Romero-Arenas S., Castro-Alonso M., Colomer-Poveda D., Rio-Rodriguez D., Jerez-Martinez A., et al. (2019). Short-term effects of anodal transcranial direct current stimulation on endurance and maximal force production: a systematic review and meta-analysis. J. Clin. Med. 8 (4), 536. 10.3390/jcm8040536 - DOI - PMC - PubMed
    1. Al-Khelaifi F., Diboun I., Donati F., Botre F., Alsayrafi M., Georgakopoulos C., et al. (2018). A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports Medicine-Open 4, 2. 10.1186/s40798-017-0114-z - DOI - PMC - PubMed
    1. Andrade D. C., Manzo O., Beltran A. R., Alvarez C., Del Rio R., Toledo C., et al. (2020). Kinematic and neuromuscular measures of intensity during plyometric jumps. J. Strength Cond. Res. 34 (12), 3395–3402. 10.1519/JSC.0000000000002143 - DOI - PubMed
    1. Angius L., Hopker J., Mauger A. R. (2017). The ergogenic effects of transcranial direct current stimulation on exercise performance. Front. Physiology 8, 90. 10.3389/fphys.2017.00090 - DOI - PMC - PubMed
    1. Angius L., Santarnecchi E., Pascual-Leone A., Marcora S. M. (2019). Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance performance in healthy individuals. Neuroscience 419, 34–45. 10.1016/j.neuroscience.2019.08.052 - DOI - PubMed

Publication types

LinkOut - more resources