Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 19:15:1424815.
doi: 10.3389/fphys.2024.1424815. eCollection 2024.

Efficacy of virtual reality exercise in knee osteoarthritis rehabilitation: a systematic review and meta-analysis

Affiliations

Efficacy of virtual reality exercise in knee osteoarthritis rehabilitation: a systematic review and meta-analysis

Wei Wei et al. Front Physiol. .

Abstract

Background: This systematic review and meta-analysis aims to investigate the effects of virtual reality (VR) exercise compared to traditional rehabilitation on pain, function, and muscle strength in patients with knee osteoarthritis (KOA). Additionally, the study explores the mechanisms by which VR exercise contributes to the rehabilitation of KOA patients.

Methods: We systematically searched PubMed, the Cochrane Library, Embase, Web of Science, Scopus, and PEDro according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our search spanned from the library construction to 24 May 2024, focusing on randomized controlled trials Primary outcomes included pain, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and muscle strength. Meta-analysis was conducted using RevMan (version 5.4) and Stata (version 14.0). The bias risk of included studies was assessed using the Cochrane RoB 2.0 tool, while the quality of evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach.

Results: This meta-analysis and systematic review included nine studies involving 456 KOA patients. The results indicated that VR exercise significantly improved pain scores (SMD, -1.53; 95% CI: -2.50 to -0.55; p = 0.002), WOMAC total score (MD, -14.79; 95% CI: -28.26 to -1.33; p = 0.03), WOMAC pain score (MD, -0.93; 95% CI: -1.52 to -0.34; p = 0.002), knee extensor strength (SMD, 0.51; 95% CI: 0.14 to 0.87; p = 0.006), and knee flexor strength (SMD, 0.65; 95% CI: 0.28 to 1.01; p = 0.0005), but not significantly for WOMAC stiffness (MD, -0.01; 95% CI: -1.21 to 1.19; p = 0.99) and physical function (MD, -0.35; 95% CI: -0.79 to -0.09; p = 0.12).

Conclusion: VR exercise significantly alleviates pain, enhances muscle strength and WOMAC total score in KOA patients, but improvements in joint stiffness and physical function are not significant. However, the current number of studies is limited, necessitating further research to expand on the present findings.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024540061, identifier CRD42024540061.

Keywords: knee osteoarthritis; meta-analysis; rehabilitation; systematic reviews; virtual reality.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
Flow chart of study selection according to PRISMA guidelines.
FIGURE 2
FIGURE 2
Risk-of-bias graph and summary. (A) Overall risk of bias, with each category presented as percentages. (B) Risk of bias of the studies included in the systematic review.
FIGURE 3
FIGURE 3
Forest plot for VR-based exercise compared with controls in pain.
FIGURE 4
FIGURE 4
Sensitivity analysis of pain.
FIGURE 5
FIGURE 5
Forest plot for VR-based exercise compared with controls in WOMAC.
FIGURE 6
FIGURE 6
Sensitivity analysis of WOMAC.
FIGURE 7
FIGURE 7
Forest plot for VR-based exercise compared with controls in muscle strength.

Similar articles

Cited by

References

    1. Abdelazeem F., Nambi G., Elnegamy T. (2016). Comparative study on virtual reality training (vrt) over sensory motor training (smt) in unilateral chronic osteoarthritis – a randomized control trial. Int. J. Med. Res. health Sci. 5, 7–16.
    1. Ahmadpour N., Randall H., Choksi H., Gao A., Vaughan C., Poronnik P. (2019). Virtual Reality interventions for acute and chronic pain management. Int. J. Biochem. Cell Biol. 114, 105568. 10.1016/j.biocel.2019.105568 - DOI - PubMed
    1. Alfieri F. M., Da Silva Dias C., De Oliveira N. C., Battistella L. R. (2022). Gamification in musculoskeletal rehabilitation. Curr. Rev. Musculoskelet. Med. 15, 629–636. 10.1007/s12178-022-09797-w - DOI - PMC - PubMed
    1. Allen K. D., Thoma L. M., Golightly Y. M. (2022). Epidemiology of osteoarthritis. Osteoarthr. Cartil. 30, 184–195. 10.1016/j.joca.2021.04.020 - DOI - PMC - PubMed
    1. Balshem H., Helfand M., SchüNEMANN H. J., Oxman A. D., Kunz R., Brozek J., et al. (2011). GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 64, 401–406. 10.1016/j.jclinepi.2010.07.015 - DOI - PubMed

Publication types

LinkOut - more resources