Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug;11(32):e2406228.
doi: 10.1002/advs.202406228. Epub 2024 Jul 4.

Zinc Promoted Cross-Electrophile Sulfonylation to Access Alkyl-Alkyl Sulfones

Affiliations

Zinc Promoted Cross-Electrophile Sulfonylation to Access Alkyl-Alkyl Sulfones

Zhuochen Wang et al. Adv Sci (Weinh). 2024 Aug.

Abstract

The transition metal-catalyzed multi-component cross-electrophile sulfonylation, which incorporates SO2 as a linker within organic frameworks, has proven to be a powerful, efficient, and cost-effective means of synthesizing challenging alkyl-alkyl sulfones. Transition metal catalysts play a crucial role in this method by transferring electrons from reductants to electrophilic organohalides, thereby causing undesirable side reactions such as homocoupling, protodehalogenation, β-hydride elimination, etc. It is worth noting that tertiary alkyl halides have rarely been demonstrated to be compatible with current methods owing to various undesired side reactions. In this work, a zinc-promoted cross-electrophile sulfonylation is developed through a radical-polar crossover pathway. This approach enables the synthesis of various alkyl-alkyl sulfones, including 1°-1°, 2°-1°, 3°-1°, 2°-2°, and 3°-2° types, from inexpensive and readily available alkyl halides. Various functional groups are well tolerated in the work, resulting in yields of up to 93%. Additionally, this protocol has been successfully applied to intramolecular sulfonylation and homo-sulfonylation reactions. The insights gained from this work shall be useful for the further development of cross-electrophile sulfonylation to access alkyl-alkyl sulfones.

Keywords: alkyl–alkyl sulfone; catalyst‐free; cross‐electrophile coupling; organic halides; sulfonylation.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
a) Important 1°/2°/3° alkyl–alkyl sulfones. b) Three‐component cross‐electrophile sulfonylation. c) Our design. d) Our reaction.
Scheme 1
Scheme 1
Catalyst‐free cross‐electrophile sulfonylation of 1 and 2. The reaction conditions were 1 (0.4 mmol), Zn powder (2 equiv.), K2S2O5 (2 equiv.), NaH2PO4 (50 mol%), DMSO (1.5 mL), 75 °C, 2 h, then add 2 (0.2 mmol), DMSO (0.5 mL), 75 °C, 22 h (General Procedure A). Isolated yields. a Variation: 1 (4 equiv.), Zn powder (4 equiv.), K2S2O5 (4 equiv.), 48 h. b Variation: Add NaI (50 mol%), DMSO 4 mL, 48 h. c Variation: 1 (2 equiv.), Zn powder (2 equiv.), K2S2O5 (2 equiv.), NaH2PO4 (50 mol%), DMSO (7.5 mL), 75 °C, 6 h, then add 2 (10 mmol), DMSO (2.5 mL), 75 °C, 48 h.
Scheme 2
Scheme 2
Catalyst‐free cross‐electrophile sulfonylation of 1a and 2. The reaction conditions were 1a (0.2 mmol), 2 (2 equiv.), Zn powder (5 equiv.), K2S2O5 (3 equiv.), NaH2PO4 (1.5 equiv.), DMSO (2 mL), 75 °C, 24 h (General Procedure B). Isolated yields. a Using General Procedure A.
Scheme 3
Scheme 3
Catalyst‐free homo‐electrophile sulfonylation. The reaction conditions were 2 (0.4 mmol), Zn powder (1 equiv.), K2S2O5 (1.5 equiv.), NaH2PO4 (75 mol%), NaI (25 mol%), DMSO (2 mL), 75 °C, 24 h (General Procedure C). Isolated yields.
Figure 2
Figure 2
Control experiments.
Figure 3
Figure 3
Free energy profiles of catalyst‐free cross‐electrophile sulfonylation process. Calculations were performed using Gaussian 16 at the M06‐L/6‐311 + G(d,p)‐SDD/SMD(DMSO)//B3LYP‐D3(BJ)/6‐31G(d)‐LANL2DZ level of theory. The bond lengths are shown in angstroms (Å). The Zn(II)I2 used in DFT calculations is Zn(II)I2‐complex.
Figure 4
Figure 4
Proposed mechanism.

Similar articles

References

    1. a) Wang J., Hou T., J. Chem. Inf. Model. 2009, 50, 55; - PubMed
    2. b) Xu W.‐M., Han F.‐F., He M., Hu D.‐Y., He J., Yang S., Song B.‐A., J. Agric. Food Chem. 2012, 60, 1036; - PubMed
    3. c) Ilardi E. A., Vitaku E., Njardarson J. T., J. Med. Chem. 2013, 57, 2832; - PubMed
    4. d) Scott K. A., Njardarson J. T., Top. Curr. Chem 2018, 376, 5; - PubMed
    5. e) Wang N., Saidhareddy P., Jiang X., Nat. Prod. Rep. 2020, 37, 246. - PubMed
    1. a) Carmine A. A., Brogden R. N., Heel R. C., Speight T. M., Avery G. S., Drugs 1982, 24, 85; - PubMed
    2. b) Liu K. K. C., Bailey S., Dinh D. M., Lam H., Li C., Wells P. A., Yin M.‐J., Zou A., Bioorg. Med. Chem. Lett. 2012, 22, 5114; - PubMed
    3. c) Rueeger H., Lueoend R., Rogel O., Rondeau J.‐M., Möbitz H., Machauer R., Jacobson L., Staufenbiel M., Desrayaud S., Neumann U., J. Med. Chem. 2012, 55, 3364; - PubMed
    4. d) Deeks E. D., Drugs 2020, 80, 181. - PubMed
    1. a) Nailor M. D., Sobel J. D., Expert Rev. Anti‐Infect. Ther. 2014, 5, 343; - PubMed
    2. b) Acosta‐Rangel A., Sánchez‐Polo M., Polo A. M. S., Rivera‐Utrilla J., Berber‐Mendoza M. S., Chem. Eng. J. 2018, 344, 21. - PubMed
    1. a) Köppel C., Kristinsson J., Wagemann A., Tenczer J., Martens F., Eur. J. Drug Metab. Pharmacokinet. 1991, 16, 43; - PubMed
    2. b) Condie R., Curr. Med. Res. Opin. 2008, 6, 217. - PubMed
    1. a) Himmelmann A., Am. J. Hypertens. 1996, 9, 517; - PubMed
    2. b) van Kats J. P., Sassen L. M. A., Danser A. H. J., Polak M. P. J., Soei L. K., Derkx F. H. M., Schalekamp M. A. D. H., Verdouw P. D., Br. J. Pharmacol. 2012, 117, 891. - PMC - PubMed

LinkOut - more resources