Ultrathin, High-Aspect-Ratio Bismuth Sulfohalide Nanowire Bundles for Solution-Processed Flexible Photodetectors
- PMID: 38962927
- PMCID: PMC11434017
- DOI: 10.1002/advs.202403463
Ultrathin, High-Aspect-Ratio Bismuth Sulfohalide Nanowire Bundles for Solution-Processed Flexible Photodetectors
Abstract
In this study, a novel synthesis of ultrathin, highly uniform colloidal bismuth sulfohalide (BiSX where X = Cl, Br, I) nanowires (NWs) and NW bundles (NBs) for room-temperature and solution-processed flexible photodetectors are presented. High-aspect-ratio bismuth sulfobromide (BiSBr) NWs are synthesized via a heat-up method using bismuth bromide and elemental S as precursors and 1-dodecanethiol as a solvent. Bundling of the BiSBr NWs occurs upon the addition of 1-octadecene as a co-solvent. The morphologies of the BiSBr NBs are easily tailored from sheaf-like structures to spherulite nanostructures by changing the solvent ratio. The optical bandgaps are modulated from 1.91 (BiSCl) and 1.88 eV (BiSBr) to 1.53 eV (BiSI) by changing the halide compositions. The optical bandgap of the ultrathin BiSBr NWs and NBs exhibits blueshift, whose origin is investigated through density functional theory-based first-principles calculations. Visible-light photodetectors are fabricated using BiSBr NWs and NBs via solution-based deposition followed by solid-state ligand exchanges. High photo-responsivities and external quantum efficiencies (EQE) are obtained for BiSBr NW and NB films even under strain, which offer a unique opportunity for the application of the novel BiSX NWs and NBs in flexible and environmentally friendly optoelectronic devices.
Keywords: flexible devices; nanobundles; nanocrystal inks; nanowires; semiconductors.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Solvothermal synthesis of cesium lead halide perovskite nanowires with ultra-high aspect ratios for high-performance photodetectors.Nanoscale. 2018 Dec 7;10(45):21451-21458. doi: 10.1039/c8nr05683h. Epub 2018 Nov 14. Nanoscale. 2018. PMID: 30427016
-
Assembly of Ultrathin Gold Nanowires: From Polymer Analogue to Colloidal Block.ACS Nano. 2017 Mar 28;11(3):2756-2763. doi: 10.1021/acsnano.6b07777. Epub 2017 Mar 10. ACS Nano. 2017. PMID: 28263571
-
Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices.Nanoscale. 2017 Jan 26;9(4):1567-1574. doi: 10.1039/c6nr06636d. Nanoscale. 2017. PMID: 28067929
-
Self-Catalyzed Vapor-Liquid-Solid Growth of Lead Halide Nanowires and Conversion to Hybrid Perovskites.Nano Lett. 2017 Dec 13;17(12):7561-7568. doi: 10.1021/acs.nanolett.7b03514. Epub 2017 Nov 13. Nano Lett. 2017. PMID: 29111750
-
Growth of BiSBr Microsheet Arrays for Enhanced Photovoltaics Performance.Small. 2024 Apr;20(16):e2306964. doi: 10.1002/smll.202306964. Epub 2023 Dec 10. Small. 2024. PMID: 38072815
References
-
- Law M., Goldberger J., Yang P., Annu. Rev. Mater. Res. 2004, 34, 83.
-
- Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H., Adv. Mater. 2003, 15, 353.
-
- Hu J., Odom T. W., Lieber C. M., Acc. Chem. Res. 1999, 32, 435.
-
- Cho K.‐S., Talapin D. V., Gaschler W., Murray C. B., J Chem Soc 2005, 127, 7140. - PubMed
-
- Ram M. S., Persson K.‐M., Irish A., Jönsson A., Timm R., Wernersson L.‐E., Nat. Electron. 2021, 4, 914.
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous