SNORD3A Regulates STING Transcription to Promote Ferroptosis in Acute Kidney Injury
- PMID: 38962954
- PMCID: PMC11434033
- DOI: 10.1002/advs.202400305
SNORD3A Regulates STING Transcription to Promote Ferroptosis in Acute Kidney Injury
Abstract
Acute kidney injury (AKI) signifies a sudden and prolonged decline in kidney function characterized by tubular cell death and interstitial inflammation. Small nucleolar RNAs (snoRNAs) play pivotal roles in oxidative stress and inflammation, and may play an important role in the AKI process, which remains elusive. an elevated expression of Snord3a is revealed in renal tubules in response to AKI and demonstrates that Snord3a deficiency alleviates renal injury in AKI mouse models. Notably, the deficiency of Snord3a exhibits a mitigating effect on the stimulator of interferon genes (STING)-associated ferroptosis phenotypes and the progression of tubular injury. Mechanistically, Snord3a is shown to regulate the STING signaling axis via promoting STING gene transcription; administration of Snord3a antisense oligonucleotides establishes a significant therapeutic advantage in AKI mouse models. Together, the findings elucidate the transcription regulation mechanism of STING and the crucial roles of the Snord3a-STING axis in ferroptosis during AKI, underscoring Snord3a as a potential prognostic and therapeutic target for AKI.
Keywords: STING; Snord3a; acute kidney injury; ferroptosis; snoRNA.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
STING promotes ferroptosis through NCOA4-dependent ferritinophagy in acute kidney injury.Free Radic Biol Med. 2023 Nov 1;208:348-360. doi: 10.1016/j.freeradbiomed.2023.08.025. Epub 2023 Aug 25. Free Radic Biol Med. 2023. PMID: 37634745
-
Cytosolic mtDNA-cGAS-STING axis contributes to sepsis-induced acute kidney injury via activating the NLRP3 inflammasome.Clin Exp Nephrol. 2024 May;28(5):375-390. doi: 10.1007/s10157-023-02448-5. Epub 2024 Jan 19. Clin Exp Nephrol. 2024. PMID: 38238499
-
Irisin-mediated muscle-renal crosstalk as a protective mechanism against contrast-induced acute kidney injury via cGAS-STING signalling inhibition.Clin Transl Med. 2025 Mar;15(3):e70235. doi: 10.1002/ctm2.70235. Clin Transl Med. 2025. PMID: 40008481 Free PMC article.
-
The connection between autophagy and ferroptosis in AKI: recent advances regarding selective autophagy.Ren Fail. 2024 Dec;46(2):2379601. doi: 10.1080/0886022X.2024.2379601. Epub 2024 Aug 4. Ren Fail. 2024. PMID: 39099238 Free PMC article. Review.
-
Mitochondria bridge HIF signaling and ferroptosis blockage in acute kidney injury.Cell Death Dis. 2022 Apr 6;13(4):308. doi: 10.1038/s41419-022-04770-4. Cell Death Dis. 2022. PMID: 35387983 Free PMC article. Review.
Cited by
-
cGAS-STING pathway as a promising target for digestive diseases: insights from natural plant products.Front Nutr. 2025 Jun 20;12:1594120. doi: 10.3389/fnut.2025.1594120. eCollection 2025. Front Nutr. 2025. PMID: 40621423 Free PMC article. Review.
-
Integrated bioinformatics and machine learning reveal key genes and immune mechanisms associated with uremia.Sci Rep. 2025 Jul 14;15(1):25397. doi: 10.1038/s41598-025-09950-8. Sci Rep. 2025. PMID: 40659665 Free PMC article.
-
Dihydromyricetin protects against cisplatin-induced renal injury and mitochondria-mediated apoptosis via the EGFR/HSP27/STAT3 signaling pathway.Ren Fail. 2025 Dec;47(1):2490202. doi: 10.1080/0886022X.2025.2490202. Epub 2025 Apr 14. Ren Fail. 2025. PMID: 40230054 Free PMC article.
-
Research progress of ferroptosis in acute kidney injury.Front Cell Dev Biol. 2025 Jun 25;13:1614156. doi: 10.3389/fcell.2025.1614156. eCollection 2025. Front Cell Dev Biol. 2025. PMID: 40636672 Free PMC article. Review.
-
Celastrol reduces cisplatin-induced nephrotoxicity by downregulating SNORD3A level in kidney organoids derived from human iPSCs.Front Pharmacol. 2025 Mar 27;16:1464525. doi: 10.3389/fphar.2025.1464525. eCollection 2025. Front Pharmacol. 2025. PMID: 40213693 Free PMC article.
References
-
- a) Kashani K. B., Awdishu L., Bagshaw S. M., Barreto E. F., Claure‐Del Granado R., Evans B. J., Forni L. G., Ghosh E., Goldstein S. L., Kane‐Gill S. L., Koola J., Koyner J. L., Liu M., Murugan R., Nadkarni G. N., Neyra J. A., Ninan J., Ostermann M., Pannu N., Rashidi P., Ronco C., Rosner M. H., Selby N. M., Shickel B., Singh K., Soranno D. E., Sutherland S. M., Bihorac A., Mehta R. L., Nat. Rev. Nephrol. 2023, 19, 807; - PubMed
- b) Ronco C., Bellomo R., Kellum J. A., Lancet 2019, 394, 1949. - PubMed
-
- a) Bergeron D., Faucher‐Giguère L., Emmerichs A.‐K., Choquet K., Song K. S., Deschamps‐Francoeur G., Fafard‐Couture É., Rivera A., Couture S., Churchman L. S., Heyd F., Abou Elela S., Scott M. S., Genome Biol. 2023, 24, 160; - PMC - PubMed
- b) Kiss‐László Z., Henry Y., Bachellerie J. P., Caizergues‐Ferrer M., Kiss T., Cell 1996, 85, 1077; - PubMed
- c) Bratkovič T., Božič J., Rogelj B., Nucleic Acids Res. 2020, 48, 1627,. - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials