Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 May 21;24(11):2712-23.
doi: 10.1021/bi00332a018.

Kinetics of open complex formation between Escherichia coli RNA polymerase and the lac UV5 promoter. Evidence for a sequential mechanism involving three steps

Kinetics of open complex formation between Escherichia coli RNA polymerase and the lac UV5 promoter. Evidence for a sequential mechanism involving three steps

H Buc et al. Biochemistry. .

Abstract

The forward and reverse kinetics of open complex formation between Escherichia coli RNA polymerase and the lac UV5 promoter have been studied in the temperature range of 15-42 degrees C. The standard two-step model, involving the formation of a closed intermediate, RPc, followed by an isomerization that leads to the active complex RPo, could not account for the present data. The promoter-enzyme lifetime measurements showed an inverse temperature dependence (apparent activation energy, -35 kcal/mol). A third step, which is very temperature dependent and which is very rapid at 37 degrees C, was postulated to involve the unstacking of DNA base pairs that immediately precedes open complex formation. Evidence for incorporating a new binary complex, RPi, in the pathway was provided by experiments that distinguished between stably bound species and active promoter after temperature-jump perturbations. These experiments allowed measurement of the rate of reequilibration between the stably bound species and determination of the corresponding equilibrium constant. They indicated that the third step became rate limiting below 20 degrees C; this prediction was checked by an analysis of the forward kinetics. A quantitative evaluation of the parameters involved in this three-step model is provided. Similar experiments were performed on a negatively supercoiled template: in this case the third equilibrium was driven toward formation of the open complex even at low temperature, and the corresponding step was not rate limiting.

PubMed Disclaimer

Publication types

Substances