Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 May 21;24(11):2812-8.
doi: 10.1021/bi00332a032.

Large-scale purification, oligomerization equilibria, and specific interaction of the LexA repressor of Escherichia coli

Large-scale purification, oligomerization equilibria, and specific interaction of the LexA repressor of Escherichia coli

M Schnarr et al. Biochemistry. .

Abstract

A rapid large-scale procedure for the purification of the LexA repressor of Escherichia coli is described. This procedure allows one to get more than 100 mg of purified protein from 100 g of bacterial paste with a purity of at least 97%. This method is comparable to earlier, far more complicated purification procedures giving clearly smaller yields. It is shown that the LexA protein may be identified spectroscopically by a large A235/A280 ratio and very pronounced ripples in the absorption spectrum arising from a high amount of phenylalanine residues with respect to that of the other aromatic amino acids. Polyacrylamide gel electrophoresis has been used to study the specific interaction of LexA with a recA operator fragment. The quaternary structure of LexA has been studied by equilibrium ultracentrifugation and sedimentation velocity measurements. The sedimentation coefficient increases with increasing LexA concentration, indicating that LexA is involved in self-association. This finding has been confirmed by equilibrium ultracentrifugation. The results are best described by a monomer-dimer and a subsequent dimer-tetramer equilibrium, with an association constant of 2.1 X 10(4) M-1 for the dimer and 7.7 X 10(4) M-1 for the tetramer formation. These relatively small association constants determined under near-physiological pH and salt conditions suggest that in vivo LexA should be essentially in the monomeric state. The degree to which LexA decreases the electrophoretic mobility of a 175 base pair fragment harboring the recA operator suggests that the recA operator interacts nevertheless with a LexA dimer. However, our results may be also explained by the binding of a LexA monomer with a simultaneous bending of the DNA fragment.

PubMed Disclaimer

Publication types

MeSH terms