Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 29;75(2):91-101.
doi: 10.2478/aiht-2024-75-3817. eCollection 2024 Jun 1.

Deciphering the molecular landscape of ionising radiation-induced eye damage with the help of genomic data mining

Affiliations

Deciphering the molecular landscape of ionising radiation-induced eye damage with the help of genomic data mining

Katarina Baralić et al. Arh Hig Rada Toksikol. .

Abstract

Even at low levels, exposure to ionising radiation can lead to eye damage. However, the underlying molecular mechanisms are not yet fully understood. We aimed to address this gap with a comprehensive in silico approach to the issue. For this purpose we relied on the Comparative Toxicogenomics Database (CTD), ToppGene Suite, Cytoscape, GeneMANIA, and Metascape to identify six key regulator genes associated with radiation-induced eye damage (ATM, CRYAB, SIRT1, TGFB1, TREX1, and YAP1), all of which have physical interactions. Some of the identified molecular functions revolve around DNA repair mechanisms, while others are involved in protein binding, enzymatic activities, metabolic processes, and post-translational protein modifications. The biological processes are mostly centred on response to DNA damage, the p53 signalling pathway in particular. We identified a significant role of several miRNAs, such as hsa-miR-183 and hsamiR-589, in the mechanisms behind ionising radiation-induced eye injuries. Our study offers a valuable method for gaining deeper insights into the adverse effects of radiation exposure.

Izloženost ionizirajućem zračenju čak i pri niskim razinama može pridonijeti nastanku oštećenja oka. Međutim, osnovni molekulski mehanizmi i dalje nisu potpuno razjašnjeni. Cilj našega istraživanja bio je ispuniti tu nedostajuću kariku primjenom sveobuhvatnog in silico pristupa problemu. U tu svrhu, pomoću genomskih baza podataka, portala i poslužitelja (Comparative Toxicogenomics Database, ToppGene Suite portal, Cytoscape, GeneMANIA i Metascape), identificirano je šest ključnih regulacijskih gena koji su povezani s oštećenjem oka prouzročenog ionizirajućim zračenjem (ATM, CRYAB, SIRT1, TGFB1, TREX1 i YAP1) i koji su svi bili u fizičkoj interakciji. Neke od identificiranih molekulskih funkcija odnosile su se na mehanizme popravka oštećenja DNA, a druge su bile uključene u vezanje proteina, enzimsku aktivnost, metaboličke procese i posttranslacijske modifikacije proteina. Biološki procesi uglavnom su bili povezani s odgovorom na oštećenje DNA, pogotovo sa signalnim putem p53. Uočena je i značajna uloga nekoliko miRNA, poput hsa-miR-183 i hsa-miR-589, u mehanizmima povezanima s oštećenjem oka prouzročenog ionizirajućim zračenjem. Osim toga, u ovom je istraživanju opisana korisna metoda za ispitivanje štetnih učinaka izloženosti zračenju.

Keywords: DNA damage; biološki učinci zračenja; data mining; istraživanje podataka; miRNAs; ocular damage; oštećenje DNA; oštećenje oka; radiation health effects.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest

None to declare.

Figures

Figure 1
Figure 1
Detailed step-by-step diagram showing different phases of gene database analysis applied to investigate the relationship between the ionising radiation and eye injury
Figure 2
Figure 2
GeneMANIA network of genes associated with eye injury caused by ionising radiation (black) together with the 20 related genes (grey). Interaction type: 100 % physical interactions (GeneMANIA; https://apps.cytoscape.org/apps/genemania)
Figure 3
Figure 3
Subnetwork of interconnected genes associated with eye injury caused by ionising radiation (yellow) obtained with MCODE algorithm (https://apps.cytoscape.org/apps/mcode): (A) all input genes (n=26); (B) highly interconnected genes

Similar articles

References

    1. Bahrami Asl F, Islami-seginsara M, Ebrahimi Kalan M, Hemmatjo R, Hesam M, Shafiei-Irannejad V. Exposure to ionizing radiations and changes in blood cells and interleukin-6 in radiation workers. Environ Sci Pollut Res Int. 2022;30:35757–68. doi: 10.1007/s11356-022-24652-8. - DOI - PMC - PubMed
    1. Tamam N, Salah H, Almogren KS, Mahgoub O, Saeed MK, Abdullah Y, Thanh Tai D, Omer H, Sulieman A, Bradley DA. Evaluation of patients’ and occupational radiation risk dose during conventional and inter ventional radiology procedures. Radiat Phys Chem. 2023;207:110818. doi: 10.1016/j.radphyschem.2023.110818. - DOI
    1. UNSCEAR. 2020/2021 Report Volume I, Sources, Effects and Risks of Ionizing radiation. [displayed 22 April 2024]. Available at https://www.unscear.org/unscear/en/publications/2020_2021_1.html .
    1. ICRP. The 2007 recommendations of the International Commission on Radiological Protection. Ann ICRP. 2007;37(2–4):1–332. doi: 10.1016/j.icrp.2007.10.003. - DOI - PubMed
    1. Ciraj-Bjelac O, Antic V, Selakovic J, Bozovic P, Arandjic D, Pavlovic S. Eye lens exposure to medical staff performing electrophysiology procedures: dose assessment and correlation to patient dose. Radiat Prot Dosimetry. 2016;172:475–82. doi: 10.1093/rpd/ncv552. - DOI - PubMed