Macromolecular Interactions of Lipoprotein Lipase (LPL)
- PMID: 38963487
- DOI: 10.1007/978-3-031-58843-3_8
Macromolecular Interactions of Lipoprotein Lipase (LPL)
Abstract
Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.
Keywords: Angiopoietin-like protein; Apolipoprotein; CryoEM; Helix; Heparin; Lipase maturation factor 1; Lipoprotein lipase; Syndecan-1; Triglyceride.
© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Similar articles
-
Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates.J Biol Chem. 1992 Dec 15;267(35):25086-91. J Biol Chem. 1992. PMID: 1460010
-
Regulation of lipoprotein lipase-mediated lipolysis of triglycerides.Curr Opin Lipidol. 2020 Jun;31(3):154-160. doi: 10.1097/MOL.0000000000000676. Curr Opin Lipidol. 2020. PMID: 32332431 Free PMC article. Review.
-
Comparison of angiopoietin-like protein 3 and 4 reveals structural and mechanistic similarities.J Biol Chem. 2021 Jan-Jun;296:100312. doi: 10.1016/j.jbc.2021.100312. Epub 2021 Jan 20. J Biol Chem. 2021. PMID: 33482195 Free PMC article.
-
Apolipoproteins C-I and C-III inhibit lipoprotein lipase activity by displacement of the enzyme from lipid droplets.J Biol Chem. 2013 Nov 22;288(47):33997-34008. doi: 10.1074/jbc.M113.495366. Epub 2013 Oct 11. J Biol Chem. 2013. PMID: 24121499 Free PMC article.
-
Physiological regulation of lipoprotein lipase.Biochim Biophys Acta. 2014 Jul;1841(7):919-33. doi: 10.1016/j.bbalip.2014.03.013. Epub 2014 Apr 8. Biochim Biophys Acta. 2014. PMID: 24721265 Review.
Cited by
-
CHAF1A Promotes Preadipocyte Differentiation and Contributes to Macrosomia in Gestational Diabetes Mellitus.Reprod Sci. 2025 Aug 12. doi: 10.1007/s43032-025-01946-z. Online ahead of print. Reprod Sci. 2025. PMID: 40797060
-
Angiopoietin-like Proteins and Lipoprotein Lipase: The Waltz Partners That Govern Triglyceride-Rich Lipoprotein Metabolism? Impact on Atherogenesis, Dietary Interventions, and Emerging Therapies.J Clin Med. 2024 Sep 4;13(17):5229. doi: 10.3390/jcm13175229. J Clin Med. 2024. PMID: 39274442 Free PMC article.
-
Impact of Ultraviolet Radiation on Skin and Blood Melanin Traits in Xichou Black-Boned Chicken: A Transcriptomic and Metabolomic Study.Animals (Basel). 2025 Jan 8;15(2):141. doi: 10.3390/ani15020141. Animals (Basel). 2025. PMID: 39858141 Free PMC article.
-
Impact of dietary Alpinia Katsumadai extracts on production performance, meat quality, and gene expression in AMPK signaling regulatory pathway of Wuzhishan pigs.Front Vet Sci. 2025 Jun 5;12:1563498. doi: 10.3389/fvets.2025.1563498. eCollection 2025. Front Vet Sci. 2025. PMID: 40538725 Free PMC article.
-
Whole genome resequencing reveals genetic diversity, population structure, and selection signatures in local duck breeds.BMC Genomics. 2025 Aug 8;26(1):734. doi: 10.1186/s12864-025-11782-9. BMC Genomics. 2025. PMID: 40781581 Free PMC article.
References
-
- Allan CM, Larsson M, Jung RS, Ploug M, Bensadoun A, Beigneux AP, Fong LG, Young SG (2017) Mobility of “HSPG-bound” LPL explains how LPL is able to reach GPIHBP1 on capillaries. J Lipid Res 58(1):216–225. https://doi.org/10.1194/jlr.M072520 - DOI - PubMed
-
- Anderson NG, Fawcett B (1950) An antichylomicronemic substance produced by heparin injection. Proc Soc Exp Biol Med 74(4):768–771. https://doi.org/10.3181/00379727-74-18042 - DOI - PubMed
-
- Ando Y, Shimizugawa T, Takeshita S, Ono M, Shimamura M, Koishi R, Furukawa H (2003) A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice. J Lipid Res 44(6):1216–1223. https://doi.org/10.1194/jlr.M300031-JLR200 - DOI - PubMed
-
- Anfinsen CB, Boyle E, Brown RK (1952) The role of heparin in lipoprotein metabolism. Science 115(2996):583–586. https://doi.org/10.1126/science.115.2996.583 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources