Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 4:13:e95727.
doi: 10.7554/eLife.95727.

An atlas of brain-bone sympathetic neural circuits in mice

Affiliations

An atlas of brain-bone sympathetic neural circuits in mice

Vitaly Ryu et al. Elife. .

Abstract

There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow-these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta-hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to the bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei, and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to the bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.

Keywords: bone pain; brain-bone connection; central regulation of bone metabolism; medicine; mouse; viral tracing.

PubMed Disclaimer

Conflict of interest statement

VR, DL, KG, SK Reviewing editor, eLife, AG, RW, FK, LC, HK, OM, OB, SS No competing interests declared, TY Senior editor, eLife, MZ consults for Gershon Lehmann, Guidepoint and Coleman groups

Figures

Figure 1.
Figure 1.. PRV152 transneuronal viral tract tracing.
(A) As a control for viral injection, no expresses enhanced green fluorescent protein (EGFP) signal was detected in the paraventricular nucleus (PVH), known to possess main sympathetic pre-autonomic neurons, and the RPa, when PRV152 was placed on the bone surface. (B) By contrast, PRV152 injections into the periosteum or metaphyseal bone resulted in positive EGFP immunoreactivity in the PVH. In addition, we found PRV152-infected neurons in the intermediolateral cell column (IML) of the spinal cord at T13-L2 levels, suggesting specific bone-sympathetic nervous system (SNS) ganglia-IML-brain route of infection which are in concordance with our previous findings where PRV152 individually infected the classic SNS spinal cord neurons. Also shown are representative microphotographs illustrating PRV152 immunolabeling in the PAG (midbrain and pons), RPa (medulla), LH (hypothalamus), MPOM (forebrain), S1HL (cerebral cortex), and pv (thalamus). PVH, paraventricular hypothalamic nucleus; PAG, periaqueductal gray; RPa, raphe pallidus; LH, lateral hypothalamus; MPOM, medial preoptic nucleus, medial part; S1HL, primary somatosensory cortex, hindlimb region; pv, periventricular fiber system. Scale bar = 50 µm. Also shown is a representative low-magnification image at the hypothalamus neuroanatomical level (scale bar = 500 µm).
Figure 2.
Figure 2.. PRV152 immunolabeling in brain regions, sub-regions, and nuclei.
Numbers, and heat map representation of PRV152-labeled neurons in brain regions, namely, hypothalamus, midbrain and pons, medulla, forebrain, cerebral cortex, and thalamus, as well as their sub-regions and nuclei, following viral injections into bone. n=4. Statistics: Mean ± SEM, two-tailed Student’s t-test, *p<0.05, **p<0.01, ***p<0.001, ns (no significance).
Figure 3.
Figure 3.. Diagrammatic outline of the sympathetic nervous system (SNS) brain–bone neuroaxis relevant to pain.
The central SNS brain-bone circuit starts in the hypothalamic paraventricular nucleus (PVH) known to home SNS pre-autonomic neurons projecting to the SNS neurons of the periaqueductal gray (PAG) in the midbrain. From the PAG the SNS outflow is further relayed to the raphe pallidus-raphe magnus (RPa-RMg) neurons that are terminated in the dorsal horn of spinal gray matter, where they regulate the release of enkephalins that inhibit pain sensation by attenuating substance P (SP) release. In turn, opiates produce antinociception via the µ-opiate receptors, in part, through modulation of responses to SP. Neurons in the RMg are involved in the central modulation of noxious stimuli, therefore, the RMg-PAG could be the part of the ascending hierarchical circuit relating to the perception of bone pain.

Update of

Similar articles

Cited by

References

    1. Adler ES, Hollis JH, Clarke IJ, Grattan DR, Oldfield BJ. Neurochemical characterization and sexual dimorphism of projections from the brain to abdominal and subcutaneous white adipose tissue in the rat. The Journal of Neuroscience. 2012;32:15913–15921. doi: 10.1523/JNEUROSCI.2591-12.2012. - DOI - PMC - PubMed
    1. Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. The American Journal of Physiology. 1998;275:R291–R299. doi: 10.1152/ajpregu.1998.275.1.R291. - DOI - PubMed
    1. Bamshad M, Song CK, Bartness TJ. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. The American Journal of Physiology. 1999;276:R1569–R1578. doi: 10.1152/ajpregu.1999.276.6.R1569. - DOI - PubMed
    1. Baptista-de-Souza D, Pelarin V, Canto-de-Souza L, Nunes-de-Souza RL, Canto-de-Souza A. Interplay between 5-HT2C and 5-HT1A receptors in the dorsal periaqueductal gray in the modulation of fear-induced antinociception in mice. Neuropharmacology. 2018;140:100–106. doi: 10.1016/j.neuropharm.2018.07.027. - DOI - PubMed
    1. Benarroch EE. Descending monoaminergic pain modulation: bidirectional control and clinical relevance. Neurology. 2008;71:217–221. doi: 10.1212/01.wnl.0000318225.51122.63. - DOI - PubMed

LinkOut - more resources