Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 20:12:1383449.
doi: 10.3389/fpubh.2024.1383449. eCollection 2024.

Causal relationships between height, screen time, physical activity, sleep and myopia: univariable and multivariable Mendelian randomization

Affiliations

Causal relationships between height, screen time, physical activity, sleep and myopia: univariable and multivariable Mendelian randomization

Xiaoyu Liu et al. Front Public Health. .

Abstract

Background: This study aims to investigate the independent causal relation between height, screen time, physical activity, sleep and myopia.

Methods: Instrumental variables (IVs) for exposures and outcome were obtained from the largest publicly available genome-wide association studies (GWAS) databases. First, we performed a bidirectional univariate MR analysis using primarily the inverse variance weighted method (IVW) with height, screen time, physical activity and sleep as the exposure and myopia as the outcome to investigate the causal relationship between exposures and myopia. Sensitivity analysis was used to demonstrate its robustness. Then the multivariable MR (MVMR) and MR-based mediation approach was further used to estimate the mediating effect of potential confounders (education and time outdoors) on causality.

Results: The results of univariate MR analysis showed that taller height (OR = 1.009, 95% CI = 1.005-1.012, p = 3.71 × 10-7), longer time on computer (OR = 1.048, 95% CI = 1.029-1.047, p = 3.87 × 10-7) and less moderate physical activity (OR = 0.976, 95% CI = 0.96-0.991 p = 2.37 × 10-3) had a total effect on the increased risk of developing myopia. Meanwhile our results did not have sufficient evidence to support the causal relationship between chronotype (p = 0.637), sleep duration (p = 0.952) and myopia. After adjusting for education, only taller height remains an independent risk factor for myopia. After adjusting for education, the causal relationship between height, screen and myopia still had statistical significance. A reverse causal relationship was not found in our study. Most of the sensitivity analyses showed consistent results with those of the IVW method.

Conclusion: Our MR study revealed that genetically predicted taller height, longer time on computer, less moderate physical activity increased the risk of myopia. After full adjustment for confounders, only height remained independently associated with myopia. As a complement to observational studies, the results of our analysis provide strong evidence for the improvement of myopia risk factors and provide a theoretical basis for future measures to prevent and control myopia in adolescents.

Keywords: Mendelian randomization; height; myopia; physical activity; risk factors; screen time; sleep.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Overall design of Mendelian randomization analyses in the present study. (A) Schematic diagram of the three major assumptions of Mendelian randomization. (B) Mediation analysis diagram applied in this study.
Figure 2
Figure 2
Mendelian randomization estimated effects of exposures on myopia.

References

    1. Morgan IG, French AN, Ashby RS, Guo X, Ding X, He M, et al. . The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res. (2018) 62:134–49. doi: 10.1016/j.preteyeres.2017.09.004 - DOI - PubMed
    1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. . Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. (2016) 123:1036–42. doi: 10.1016/j.ophtha.2016.01.006, PMID: - DOI - PubMed
    1. Haarman AEG, Enthoven CA, Tideman JWL, Tedja MS, Verhoeven VJM, Klaver CCW. The complications of myopia: a review and meta-analysis. Invest Ophthalmol Vis Sci. (2020) 61:49. doi: 10.1167/iovs.61.4.49, PMID: - DOI - PMC - PubMed
    1. Xu L, Zhuang Y, Zhang G, Ma Y, Yuan J, Tu C, et al. . Design, methodology, and baseline of whole city-million scale children and adolescents myopia survey (CAMS) in Wenzhou, China. Eye Vis. (2021) 8:31. doi: 10.1186/s40662-021-00255-1, PMID: - DOI - PMC - PubMed
    1. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. (2012) 379:1739–48. doi: 10.1016/S0140-6736(12)60272-4 - DOI - PubMed