Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov;68(5):568-576.
doi: 10.1016/j.ejvs.2024.07.003. Epub 2024 Jul 6.

Machine Learning Based Prediction of Post-operative Infrarenal Endograft Apposition for Abdominal Aortic Aneurysms

Collaborators, Affiliations
Free article

Machine Learning Based Prediction of Post-operative Infrarenal Endograft Apposition for Abdominal Aortic Aneurysms

Willemina A van Veldhuizen et al. Eur J Vasc Endovasc Surg. 2024 Nov.
Free article

Abstract

Objective: Challenging infrarenal aortic neck characteristics have been associated with an increased risk of type Ia endoleak after endovascular aneurysm repair (EVAR). Short apposition (< 10 mm circumferential shortest apposition length [SAL]) on the first post-operative computed tomography angiography (CTA) has been associated with type Ia endoleak. Therefore, this study aimed to develop a model to predict post-operative SAL in patients with an abdominal aortic aneurysm based on the pre-operative shape.

Methods: A statistical shape model was developed to obtain principal component scores. The dataset comprised patients treated by standard EVAR without complications (n = 93) enriched with patients with a late type Ia endoleak (n = 54). The infrarenal SAL was obtained from the first post-operative CTA and subsequently binarised (< 10 mm and ≥ 10 mm). The principal component scores that were statistically different between the SAL groups were used as input for five classification models, and evaluated by means of leave one out cross validation. Area under the receiver operating characteristic curves (AUC), accuracy, sensitivity, and specificity were determined for each classification model.

Results: Of the 147 patients, 24 patients had an infrarenal SAL < 10 mm and 123 patients had a SAL ≥ 10 mm. The gradient boosting model resulted in the highest AUC of 0.77. Using this model, 114 patients (77.6%) were correctly classified; sensitivity (< 10 mm apposition was correctly predicted) and specificity (≥ 10 mm apposition was correctly predicted) were 0.70 and 0.79 based on a threshold of 0.21, respectively.

Conclusion: A model was developed to predict which patients undergoing EVAR will achieve sufficient graft apposition (≥ 10 mm) in the infrarenal aortic neck based on a statistical shape model of pre-operative CTA data. This model can help vascular specialists during the planning phase to accurately identify patients who are unlikely to achieve sufficient apposition after standard EVAR.

Keywords: Abdominal aortic aneurysm; Apposition; Artificial intelligence; Endovascular aneurysm repair; Supervised machine learning.

PubMed Disclaimer

MeSH terms

LinkOut - more resources