Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 18;80(Pt 7):738-741.
doi: 10.1107/S2056989024005619. eCollection 2024 Jun 1.

Crystal structure and Hirshfeld surface analysis of 2-bromo-ethyl-ammonium bromide - a possible side product upon synthesis of hybrid perovskites

Affiliations

Crystal structure and Hirshfeld surface analysis of 2-bromo-ethyl-ammonium bromide - a possible side product upon synthesis of hybrid perovskites

Oleksandr A Semenikhin et al. Acta Crystallogr E Crystallogr Commun. .

Abstract

This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br-. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of -64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H inter-actions, which constitute 62.6% of the overall close atom contacts.

Keywords: 2-bromo­ethyl­amine hydro­bromide; Hirshfeld surface analysis; crystal structure; hybrid perovskite.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The asymmetric unit of 2-bromo­ethyl­ammonium bromide with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the hydrogen bond between the cation and anion.
Figure 2
Figure 2
Projection of the crystal structure along the b axis, showing the hydrogen-bonding inter­actions with the anion being an acceptor of four N—H⋯Br hydrogen bonds.
Figure 3
Figure 3
Space-filling model of the title compound showing the organization into double layers extending parallel to (100).
Figure 4
Figure 4
Three-dimensional model of the Hirshfeld surface for 2-bromo­ethyl­ammonium bromide mapped over dnorm, representing strong inter­molecular inter­actions. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, −y + formula image, z + formula image; (iii) −x + 1, y + formula image, −z + formula image.]
Figure 5
Figure 5
Two-dimensional fingerprint plots of 2-bromo­ethyl­ammonium bromide showing (a) all inter­actions, (b) Br⋯H/H⋯Br and (c) Br⋯Br inter­actions (di and de are the closest inter­nal and external distances in Å on the Hirshfeld surface) and (d) their percentage contributions.

References

    1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Tailor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.
    1. Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., Aebli, M., Mir, S. H., Masciocchi, N., Erni, R., Chakraborty, S., Guagliardi, A., Rainò, G. & Kovalenko, M. V. (2024). ACS Nano, 18, 5684–5697. - PMC - PubMed
    1. Dey, A., Ye, J., De, A., Debroye, E., Ha, S. K., Bladt, E., Kshirsagar, A. S., Wang, Z., Yin, J., Wang, Y., Quan, L. N., Yan, F., Gao, M., Li, X., Shamsi, J., Debnath, T., Cao, M., Scheel, M. A., Kumar, S., Steele, J. A., Gerhard, M., Chouhan, L., Xu, K., Wu, X. G., Li, Y., Zhang, Y., Dutta, A., Han, C., Vincon, I., Rogach, A. L., Nag, A., Samanta, A., Korgel, B. A., Shih, C. J., Gamelin, D. R., Son, D. H., Zeng, H., Zhong, H., Sun, H., Demir, H. V., Scheblykin, I. G., Mora-Seró, I., Stolarczyk, J. K., Zhang, J. Z., Feldmann, J., Hofkens, J., Luther, J. M., Pérez-Prieto, J., Li, L., Manna, L., Bodnarchuk, M. I., Kovalenko, M. V., Roeffaers, M. B. J., Pradhan, N., Mohammed, O. F., Bakr, O. M., Yang, P., Müller-Buschbaum, P., Kamat, P. V., Bao, Q., Zhang, Q., Krahne, R., Galian, R. E., Stranks, S. D., Bals, S., Biju, V., Tisdale, W. A., Yan, Y., Hoye, R. L. Z. & Polavarapu, L. (2021). ACS Nano, 15, 10775–10981.
    1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
    1. Hassan, Y., Park, J. H., Crawford, M. L., Sadhanala, A., Lee, J., Sadighian, J. C., Mosconi, E., Shivanna, R., Radicchi, E., Jeong, M., Yang, C., Choi, H., Park, S. H., Song, M. H., De Angelis, F., Wong, C. Y., Friend, R. H., Lee, B. R. & Snaith, H. J. (2021). Nature, 591, 72–77. - PubMed

LinkOut - more resources