LASSO-Based Machine Learning Algorithm for Prediction of PICS Associated with Sepsis
- PMID: 38974318
- PMCID: PMC11225988
- DOI: 10.2147/IDR.S464906
LASSO-Based Machine Learning Algorithm for Prediction of PICS Associated with Sepsis
Abstract
Introduction: This study aims to establish a comprehensive, multi-level approach for tackling tropical diseases by proactively anticipating and managing Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) within the initial 14 days of Intensive Care Unit (ICU) admission. The primary objective is to amalgamate a diverse array of indicators and pathogenic microbial data to pinpoint pivotal predictive variables, enabling effective intervention specifically tailored to the context of tropical diseases.
Methods: A focused analysis was conducted on 1733 patients admitted to the ICU between December 2016 and July 2019. Utilizing the Least Absolute Shrinkage and Selection Operator (LASSO) regression, disease severity and laboratory indices were scrutinized. The identified variables served as the foundation for constructing a predictive model designed to forecast the occurrence of PICS.
Results: Among the subjects, 13.79% met the diagnostic criteria for PICS, correlating with a mortality rate of 38.08%. Key variables, including red-cell distribution width coefficient of variation (RDW-CV), hemofiltration (HF), mechanical ventilation (MV), Norepinephrine (NE), lactic acidosis, and multiple-drug resistant bacteria (MDR) infection, were identified through LASSO regression. The resulting predictive model exhibited a robust performance with an Area Under the Curve (AUC) of 0.828, an accuracy of 0.862, and a specificity of 0.977. Subsequent validation in an independent cohort yielded an AUC of 0.848.
Discussion: The acquisition of RDW-CV, HF requirement, MV requirement, NE requirement, lactic acidosis, and MDR upon ICU admission emerges as a pivotal factor for prognosticating PICS onset in the context of tropical diseases. This study highlights the potential for significant improvements in clinical outcomes through the implementation of timely and targeted interventions tailored specifically to the challenges posed by tropical diseases.
Keywords: LASSO regression; mortality; persistent inflammation immunosuppression catabolism syndrome; predictive model; sepsis.
© 2024 Hui et al.
Conflict of interest statement
The authors report no conflicts of interest in this work.
Figures



Similar articles
-
LASSO-Based Identification of Risk Factors and Development of a Prediction Model for Sepsis Patients.Ther Clin Risk Manag. 2024 Feb 7;20:47-58. doi: 10.2147/TCRM.S434397. eCollection 2024. Ther Clin Risk Manag. 2024. PMID: 38344194 Free PMC article.
-
Persistent inflammation-immunosuppression-catabolism syndrome in patients with systemic lupus erythematosus.Int Urol Nephrol. 2023 Jul;55(7):1757-1765. doi: 10.1007/s11255-023-03479-3. Epub 2023 Feb 5. Int Urol Nephrol. 2023. PMID: 36739569 Free PMC article.
-
[Predictive value of glycosylated serum protein combined with glycemic variability on secondary persistent inflammatory immunosuppressed catabolic syndrome prediction in elderly septic patients].Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018 Nov;30(11):1051-1055. doi: 10.3760/cma.j.issn.2095-4352.2018.011.008. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018. PMID: 30541644 Chinese.
-
Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy.Front Immunol. 2018 Apr 4;9:595. doi: 10.3389/fimmu.2018.00595. eCollection 2018. Front Immunol. 2018. PMID: 29670613 Free PMC article. Review.
-
Persistent inflammation, immunosuppression, and catabolism syndrome (PICS): a review of definitions, potential therapies, and research priorities.Br J Anaesth. 2024 Mar;132(3):507-518. doi: 10.1016/j.bja.2023.11.052. Epub 2024 Jan 4. Br J Anaesth. 2024. PMID: 38177003 Free PMC article. Review.
References
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous