Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2025 Aug 24:2024.06.26.24309127.
doi: 10.1101/2024.06.26.24309127.

Stratifying Lung Adenocarcinoma Risk with Multi-ancestry Polygenic Risk Scores in East Asian Never-Smokers

Batel Blechter  1 Xiaoyu Wang  1 Juncheng Dai  2   3 Christiana Karsonaki  4 Jianxin Shi  1 Kouya Shiraishi  5 Jiyeon Choi  1 Keitaro Matsuo  6 Tzu-Yu Chen  7   8 Rayjean J Hung  9 Kexin Chen  10 Xiao-Ou Shu  11 Young Tae Kim  12 Parichoy Pal Choudhury  13 Jacob Williams  1 Maria Teresa Landi  1 Dongxin Lin  14 Wei Zheng  11 Zhihua Yin  15 Baosen Zhou  16 Jiucun Wang  17   18 Wei Jie Seow  19   20 Lei Song  1 I-Shou Chang  21 Wei Hu  1 Li-Hsin Chien  7   22 Qiuyin Cai  11 Yun-Chul Hong  23 Hee Nam Kim  24 Yi-Long Wu  25 Maria Pik Wong  26 Brian Douglas Richardson  1   27 Shilan Li  1   28 Tongwu Zhang  1 Charles Breeze  1 Zhaoming Wang  29 Bryan A Bassig  30 Jin Hee Kim  31 Demetrius Albanes  1 Jason Yy Wong  32 Min-Ho Shin  24 Lap Ping Chung  26 Yang Yang  33 Hong Zheng  10 Hongji Dai  10 Yasushi Yatabe  34 Xu-Chao Zhang  25 Young-Chul Kim  35   36 Neil E Caporaso  1 Jiang Chang  37 James Chung Man Ho  38 Yataro Daigo  39   40 Yukihide Momozawa  41 Yoichiro Kamatani  42 Masashi Kobayashi  43 Kenichi Okubo  43 Takayuki Honda  44 H Dean Hosgood  45 Hideo Kunitoh  46 Shun-Ichi Watanabe  47 Yohei Miyagi  48 Shingo Matsumoto  49 Hidehito Horinouchi  47 Masahiro Tsuboi  50 Ryuji Hamamoto  51 Koichi Goto  49 Atsushi Takahashi  52 Akiteru Goto  53 Yoshihiro Minamiya  54 Megumi Hara  55 Yuichiro Nishida  55 Kenji Takeuchi  56 Kenji Wakai  56 Koichi Matsuda  57 Yoshinori Murakami  58 Kimihiro Shimizu  59 Hiroyuki Suzuki  60 Motonobu Saito  61 Yoichi Ohtaki  62 Kazumi Tanaka  63 Tangchun Wu  64 Fusheng Wei  65 Mitchell J Machiela  1 Yeul Hong Kim  66 In-Jae Oh  67   36 Victor Ho Fun Lee  68 Gee-Chen Chang  69   70   71   72   73 Kuan-Yu Chen  74 Wu-Chou Su  75 Yuh-Min Chen  76 Adeline Seow  19 Jae Yong Park  77 Sun-Seog Kweon  24   78 Yu-Tang Gao  79 Jianjun Liu  80   81 Ann G Schwartz  82 Richard Houlston  83 Ivan P Gorlov  84 Xifeng Wu  85 Ping Yang  86 Stephen Lam  87 Adonina Tardon  88 Chu Chen  89 Stig E Bojesen  90   91 Mattias Johansson  92 Angela Risch  93   94   95 Heike Bickeböller  96 Bu-Tian Ji  1 H-Erich Wichmann  97   98 David C Christiani  99 Gad Rennert  100 Susanne M Arnold  101 Paul Brennan  92 James McKay  92 John K Field  102 Michael P A Davies  102 Sanjay S Shete  103 Loïc Le Marchand  104 Geoffrey Liu  105 Angeline S Andrew  106 Lambertus A Kiemeney  107 Shan Zienolddiny-Narui  108 Kjell Grankvist  109 Angela Cox  110 Fiona Taylor  111 Jian-Min Yuan  112 Philip Lazarus  113 Matthew B Schabath  114 Melinda C Aldrich  115 Hyo-Sung Jeon  116 Shih Sheng Jiang  21 Chung-Hsing Chen  21   117 Chin-Fu Hsiao  7 Zhibin Hu  2 Laura Burdett  1   118 Meredith Yeager  1   118 Amy Hutchinson  1   118 Belynda Hicks  1   118 Jia Liu  1   118 Sonja I Berndt  1 Wei Wu  15 Junwen Wang  119   120 Yuqing Li  121 Jin Eun Choi  122 Kyong Hwa Park  123 Sook Whan Sung  124 Chang Hyun Kang  125 Wen-Chang Wang  126 Jun Xu  127 Peng Guan  15   128 Wen Tan  14 Chong-Jen Yu  129 Gong Yang  11 Alan Dart Loon Sihoe  130 Yi Young Choi  116 In Kyu Park  125 Hsiao-Han Hung  21 Roel C H Vermeulen  131 Iona Cheng  121 Junjie Wu  132 Fang-Yu Tsai  21 John K C Chan  133 Jihua Li  134   135 Hsien-Chih Lin  7   135 Jie Liu  136 Bao Song  136 Norie Sawada  137 Taiki Yamaji  138 Kathleen Wyatt  1   118 Hongxia Ma  2   3 Meng Zhu  2   3 Yifan Wang  2   3 Tianchen Qi  2   3 Xuelian Li  15   128 Yangwu Ren  15   128 Ann Chao  139 Motoki Iwasaki  137   138 Junjie Zhu  33 Guoping Wu  65 Chih-Yi Chen  140   141 Chien-Jen Chen  142 Pan-Chyr Yang  143 Victoria L Stevens  144 Joseph F Fraumeni Jr  1 Kuang Lin  4 Robin G Walters  4 Zhengming Chen  4 Nilanjan Chatterjee  1   145   146 Olga Y Gorlova  147   148   149 Christopher I Amos  147   148   149   150 Hongbing Shen  2   3 Chao Agnes Hsiung  7 Stephen J Chanock  1 Nathaniel Rothman  1 Takashi Kohno  5 Qing Lan  1 Haoyu Zhang  1
Affiliations

Stratifying Lung Adenocarcinoma Risk with Multi-ancestry Polygenic Risk Scores in East Asian Never-Smokers

Batel Blechter et al. medRxiv. .

Update in

  • Stratifying lung adenocarcinoma risk with multi-ancestry polygenic risk scores in East Asian never-smokers.
    Blechter B, Wang X, Dai J, Karsonaki C, Shi J, Shiraishi K, Choi J, Matsuo K, Chen TY, Hung RJ, Chen K, Shu XO, Kim YT, Choudhury PP, Williams J, Landi MT, Lin D, Zheng W, Yin Z, Zhou B, Wang J, Seow WJ, Song L, Chang IS, Hu W, Chien LH, Cai Q, Hong YC, Kim HN, Wu YL, Wong MP, Richardson BD, Li S, Zhang T, Breeze C, Wang Z, Bassig BA, Kim JH, Albanes D, Wong Sm JY, Shin MH, Chung LP, Yang Y, Zheng H, Dai H, Yatabe Y, Zhang XC, Kim YC, Caporaso NE, Chang J, Ho JCM, Daigo Y, Momozawa Y, Kamatani Y, Kobayashi M, Okubo K, Honda T, Hosgood HD, Kunitoh H, Watanabe SI, Miyagi Y, Matsumoto S, Horinouchi H, Tsuboi M, Hamamoto R, Goto K, Takahashi A, Goto A, Minamiya Y, Hara M, Nishida Y, Takeuchi K, Wakai K, Matsuda K, Murakami Y, Shimizu K, Suzuki H, Saito M, Ohtaki Y, Tanaka K, Wu T, Wei F, Machiela MJ, Kim YH, Oh IJ, Lee VHF, Chang GC, Chen KY, Su WC, Chen YM, Seow A, Park JY, Kweon SS, Gao YT, Liu J, Schwartz AG, Houlston R, Gorlov IP, Wu X, Yang P, Lam S, Tardon A, Chen C, Bojesen SE, Johansson M, Risch A, Bickeböller H, Ji BT, Wichmann HE, Christiani DC, Rennert G, Arnold SM, Brennan P, McKay J, Field JK, Davies MPA, Shete SS, Le Marchand L, Liu G, Andrew AS, Kiemeney LA, Zienolddiny… See abstract for full author list ➔ Blechter B, et al. J Natl Cancer Inst. 2025 Oct 1:djaf272. doi: 10.1093/jnci/djaf272. Online ahead of print. J Natl Cancer Inst. 2025. PMID: 41032288

Abstract

Background: Lung adenocarcinoma (LUAD) in never-smokers is a major public health burden, especially among East Asian women. Polygenic risk scores (PRSs) are promising for risk stratification but are primarily developed in European-ancestry populations. We aimed to develop and validate single- and multi-ancestry PRSs for East Asian never-smokers to improve LUAD risk prediction.

Methods: PRSs were developed using genome-wide association study summary statistics from East Asian (8,002 cases; 20,782 controls) and European (2,058 cases; 5,575 controls) populations. Single-ancestry models included PRS-25, PRS-CT, and LDpred2; multi-ancestry models included LDpred2+PRS-EUR128, PRS-CSx, and CT-SLEB. Performance was evaluated in independent East Asian data from the Female Lung Cancer Consortium (FLCCA) and externally validated in the Nanjing Lung Cancer Cohort (NJLCC). We assessed predictive accuracy via AUC, with 10-year and (age 30-80) absolute risks estimates.

Results: The best multi-ancestry PRS, using East Asian and European data via CT-SLEB (clumping and thresholding, super learning, empirical Bayes), outperformed the best East Asian-only PRS (LDpred2; AUC=0.629, 95% CI:0.618,0.641), achieving an AUC of 0.640 (95% CI:0.629,0.653) and odds ratio of 1.71 (95% CI:1.61,1.82) per SD increase. NJLCC Validation confirmed robust performance (AUC =0.649, 95% CI: 0.623, 0.676). The top 20% PRS group had a 3.92-fold higher LUAD risk than the bottom 20%. Further, the top 5% PRS group reached a 6.69% lifetime absolute risk. Notably, this group reached the average population 10-year LUAD risk at age 50 (0.42%) by age 41, nine years earlier.

Conclusions: Multi-ancestry PRS approaches enhance LUAD risk stratification in East Asian never-smokers, with consistent external validation, suggesting future clinical utility.

Keywords: East Asian never smokers; Genome-wide association studies; Lifetime absolute risk; Lung adenocarcinoma; Polygenic risk scores.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest The authors declare no competing interests.

Figures

Figure 1.
Figure 1.. Overview of data structure, polygenic risk score (PRS) development, validation and application.
Summary statistics from East Asian genome-wide association studies (GWAS) were used to develop single-ancestry PRS using methods such as a simple PRS constructed using 25 SNPs that have previously reached genome-wide significance (i.e., P<5×10−8) (PRS-25), a PRS using the clumping and thresholding (CT) method (PRS-CT) incorporating 8 SNPs, and a PRS using a genome-wide Bayesian-based approach, LDpred2 (LDpred2 PRS) incorporating close to a million SNPs. For the multi-ancestry PRS development, we also used summary statistics from European (EUR) GWAS, applying the PRS-CSx method that leveraged genome-wide association summary statistics for close to a million SNPs with a Bayesian continuous shrinkage prior to model SNP effect sizes across populations, as well as CT-SLEB method, which enhances the standard CT methods with a two-dimensional approach to select SNPS for East Asian PRS construction by incorporating over 2 million SNPs. Tuning and validation of each PRS was conducted in an independent East Asian individual-level data. Relative risk per PRS quantile was calculated as an odds ratio (OR) with the middle quantile (40th to 60th percentile) set as the reference, and the area under the receiver operating curve (AUC) was estimated for each PRS. CT-SLEB PRS was used to estimate 10-year and lifetime cumulative absolute risk, and PRS-CT and PRS-LDpred2 were used for sample size projection.
Figure 2.
Figure 2.. Relative risk estimated for quantiles of each polygenic risk score (PRS) and lung adenocarcinoma in the validation dataset of women with East Asian ancestry, treating the 40th to 60th percentile as the references.
Odds ratios of PRS per standard deviation (SD) and 95% confidence intervals are shown for (A) the single-ancestry 25 SNP polygenic risk score, PRS-25 (A), (B) Clumping and thresholding method, PRS-CT, (C) Bayesian-based genome-wide approach, LDpred2 PRS, and (D) multi-ancestry approach, CT-SLEB.
Figure 3.
Figure 3.. Association between polygenic risk score (PRS) and lung adenocarcinoma by age groups.
(A) Odds ratios (ORs) per standard deviation (SD) of the PRS and 95% confidence intervals, and (B) ORs for individuals in the upper 90th percentile of the PRS.
Figure 4.
Figure 4.. Lifetime cumulative and 10-year absolute risk of developing lung adenocarcinoma.
(A) Lifetime (age 30–80) cumulative risk and (B) 10-year absolute risk of developing lung adenocarcinoma in never-smoking women in East Asia by percentiles of the CT-SLEB polygenic risk score (PRS). Absolute risks were calculated using the iCARE package, based on Taiwan’s age-specific incidence and mortality data, and the PRS relative risks, as described in the Methods section.
Figure 5.
Figure 5.. Projected area under the receiver operating characteristic curve (AUC) of polygenic risk scores (PRS) built using genome-wide association studies (GWAS) with varying sample sizes for lung adenocarcinoma in never-smoking East Asian women.
(A) AUC values for PRS-CT and LDpred2 PRS with case-to-control ratios of 1:1 and 1:10. (B) AUC values for LDpred2 PRS across case-to-control ratios of 1:1, 1:2, 1:3, 1:4, 1:5, and 1:10

References

    1. Bray F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 68, 394–424 (2018). - PubMed
    1. Sun S., Schiller J. H. & Gazdar A. F. Lung cancer in never smokers--a different disease. Nat. Rev. Cancer 7, 778–790 (2007). - PubMed
    1. Cheng T. Y. D. et al. The International Epidemiology of Lung Cancer: Latest Trends, Disparities, and Tumor Characteristics. J. Thorac. Oncol. 11, 1653–1671 (2016). - PMC - PubMed
    1. Byun J. et al. ‘Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer’. Nat Genet 54, 1167 (2022). - PMC - PubMed
    1. Landi M. T. et al. Tracing lung cancer risk factors through mutational signatures in never-smokers. Am. J. Epidemiol. 190, 962–976 (2021). - PMC - PubMed

Publication types

LinkOut - more resources