Artificial Intelligence in Perioperative Care: Opportunities and Challenges
- PMID: 38980160
- PMCID: PMC11239120
- DOI: 10.1097/ALN.0000000000005013
Artificial Intelligence in Perioperative Care: Opportunities and Challenges
Abstract
Artificial intelligence (AI) applications have great potential to enhance perioperative care. This paper explores promising areas for AI in anesthesiology; expertise, stakeholders, and infrastructure for development; and barriers and challenges to implementation.
Conflict of interest statement
The remaining authors declare no competing interests.
Figures
References
-
- Stiegler MP, Tung A: Cognitive Processes in Anesthesiology Decision Making. Anesthesiology 2014; 120:204–17 - PubMed
-
- Noordzij PG, Poldermans D, Schouten O, Bax JJ, Schreiner FAG, Boersma E: Postoperative Mortality in The Netherlands. Anesthesiology 2010; 112:1105–15 - PubMed
-
- De Francesco D, Reiss JD, Roger J, Tang AS, Chang AL, Becker M, Phongpreecha T, Espinosa C, Morin S, Berson E, Thuraiappah M, Le BL, Ravindra NG, Payrovnaziri SN, Mataraso S, Kim Y, Xue L, Rosenstein MG, Oskotsky T, Marić I, Gaudilliere B, Carvalho B, Bateman BT, Angst MS, Prince LS, Blumenfeld YJ, Benitz WE, Fuerch JH, Shaw GM, Sylvester KG, Stevenson DK, Sirota M, Aghaeepour N: Data-driven longitudinal characterization of neonatal health and morbidity. Sci Transl Med 2023; 15 - PMC - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
