Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 5:476:135112.
doi: 10.1016/j.jhazmat.2024.135112. Epub 2024 Jul 6.

Preparation of dual recognition adsorbents based on molecularly imprinted polymers and aptamer for highly sensitive recognition and enrichment of ochratoxin A

Affiliations

Preparation of dual recognition adsorbents based on molecularly imprinted polymers and aptamer for highly sensitive recognition and enrichment of ochratoxin A

Lingjun Geng et al. J Hazard Mater. .

Abstract

In light of the significant risks that mycotoxins posed to public health and environmental safety, this research developed an adsorbent MIPs/Apt/AuNPs@ZIF-67 (MA-AZ) utilizing a dual-recognition approach combining molecularly imprinted polymers (MIPs) and aptamer (Apt). This innovative method enabled the effective and highly selective recognition and enrichment of ochratoxin A (OTA). ZIF-67 was utilized as a carrier with a substantial specific surface area, and gold nanoparticles (AuNPs) were loaded on its surface to fix the thiol-modified Apt on the surface of the carrier. Then, an initiator was used to initiate a polymerization reaction, and the generated MIPs coated Apt/AuNPs@ZIF-67, thereby synthesizing the MA-AZ with a "synergistic recognition" effect. The Apt significantly increased the number of recognition sites within the imprinted cavities, and MIPs played roles in identifying targets, fixing and protecting Apt. The combination of the both produced the effect of "1+1>2". The study on the adsorption performance of MA-AZ found that the adsorption capacity of MA-AZ could reach 65.1 mg/g, and the imprinted factor was 5.48. In addition, MA-AZ exhibited excellent stability, specificity, reusability and recovery rate. Thus, this study offers valuable insights for the recognition and enrichment of hazardous substances, and helps to promote the rapid development of safety detection.

Keywords: Aptamer; Dual recognition strategy; Molecularly imprinted polymers; Ochratoxin A; Solid-phase extraction.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Publication types

LinkOut - more resources