Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Second Quarter;51(2):189-196.

Cardiovascular effects of breath-hold diving at altitude

Affiliations
  • PMID: 38985155

Cardiovascular effects of breath-hold diving at altitude

Claudio Marabotti et al. Undersea Hyperb Med. 2024 Second Quarter.

Abstract

Hypoxia, centralization of blood in pulmonary vessels, and increased cardiac output during physical exertion are the pathogenetic pathways of acute pulmonary edema observed during exposure to extraordinary environments. This study aimed to evaluate the effects of breath-hold diving at altitude, which exposes simultaneously to several of the stimuli mentioned above. To this aim, 11 healthy male experienced divers (age 18-52y) were evaluated (by Doppler echocardiography, lung echography to evaluate ultrasound lung B-lines (BL), hemoglobin saturation, arterial blood pressure, fractional NO (Nitrous Oxide) exhalation in basal condition (altitude 300m asl), at altitude (2507m asl) and after breath-hold diving at altitude. A significant increase in E/e' ratio (a Doppler-echocardiographic index of left atrial pressure) was observed at altitude, with no further change after the diving session. The number of BL significantly increased after diving at altitude as compared to basal conditions. Finally, fractional exhaled nitrous oxide was significantly reduced by altitude; no further change was observed after diving. Our results suggest that exposure to hypoxia may increase left ventricular filling pressure and, in turn, pulmonary capillary pressure. Breath-hold diving at altitude may contribute to interstitial edema (as evaluated by BL score), possibly because of physical efforts made during a diving session. The reduction of exhaled nitrous oxide at altitude confirms previous reports of nitrous oxide reduction after repeated exposure to hypoxic stimuli. This finding should be further investigated since reduced nitrous oxide production in hypoxic conditions has been reported in subjects prone to high-altitude pulmonary edema.

Keywords: acute pulmonary edema; breath-hold diving; nitric oxide.

PubMed Disclaimer

Conflict of interest statement

The authors of this paper declare no conflicts of interest exist with this submission.

MeSH terms