Plastic pollution and human pathogens: Towards a conceptual shift in risk management at bathing water and beach environments
- PMID: 38991248
- DOI: 10.1016/j.watres.2024.122028
Plastic pollution and human pathogens: Towards a conceptual shift in risk management at bathing water and beach environments
Abstract
Emerging evidence indicates that micro- and macro-plastics present in water can support a diverse microbial community, including potential human pathogens (e.g., bacteria, viruses). This interaction raises important concerns surrounding the role and suitability of current bathing water regulations and associated pathogen exposure risk within beach environments. In response to this, we critically evaluated the available evidence on plastic-pathogen interactions and identified major gaps in knowledge. This review highlighted the need for a conceptual shift in risk management at public beaches recognising: (i) interconnected environmental risks, e.g., associations between microbial compliance parameters, potential pathogens and both contemporary and legacy plastic pollution; and (ii) an appreciation of risk of exposure to plastic co-pollutants for both water and waterside users. We present a decision-making framework to identify options to manage plastic-associated pathogen risks alongside short- and longer-term research priorities. This advance will help deliver improvements in managing plastic-associated pathogen risk, acknowledging that human exposure potential is not limited to only those who engage in water-based activity. We argue that adopting these recommendations will help create an integrated approach to managing and reducing human exposure to pathogens at bathing, recreational water and beach environments.
Keywords: Biofilm; Microplastics; Plastisphere; Public health risk; Sewage-related debris.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
