Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1985 Jun;63(6):585-98.
doi: 10.1139/o85-077.

Does actin produce the force that moves a chromosome to the pole during anaphase?

Review

Does actin produce the force that moves a chromosome to the pole during anaphase?

A Forer. Can J Biochem Cell Biol. 1985 Jun.

Abstract

Chromosomes move towards spindle poles because of force produced by chromosomal spindle fibres. I argue that actin is involved in producing this force. Actin is present in chromosomal spindle fibres, with consistent polarity. Physiological experiments using ultraviolet microbeam irradiations suggest that the force is due to an actin and myosin (or myosin-equivalent) system. Other physiological experiments (using inhibitors in "leaky" cells or antibodies injected into cells) that on the face of it would seem to rule out actin and myosin on closer scrutiny do not really do so at all. I argue that in vivo the "on" ends of chromosomal spindle fibre microtubules are at the kinetochores; I discuss the apparent contradiction between this conclusion and those from experiments on microtubules in vitro. From what we know of treadmilling in microtubules in vitro, the poleward movements of irradiation-induced areas of reduced birefringence (arb) can not be explained as treadmilling of microtubules: additional assumptions need to be made for arb movements toward the pole to be due to treadmilling. If arb movement does indeed represent treadmilling along chromosomal spindle fibre microtubules, treadmilling continues throughout anaphase. Thus I suggest that chromosomal spindle fibres shorten in anaphase not because polymerization is stopped at the kinetochore (the on end), as previously assumed, but rather because there is increased depolymerization at the pole (the "off" end).

PubMed Disclaimer

Similar articles

Cited by