Variable importance analysis with interpretable machine learning for fair risk prediction
- PMID: 38995879
- PMCID: PMC11244764
- DOI: 10.1371/journal.pdig.0000542
Variable importance analysis with interpretable machine learning for fair risk prediction
Abstract
Machine learning (ML) methods are increasingly used to assess variable importance, but such black box models lack stability when limited in sample sizes, and do not formally indicate non-important factors. The Shapley variable importance cloud (ShapleyVIC) addresses these limitations by assessing variable importance from an ensemble of regression models, which enhances robustness while maintaining interpretability, and estimates uncertainty of overall importance to formally test its significance. In a clinical study, ShapleyVIC reasonably identified important variables when the random forest and XGBoost failed to, and generally reproduced the findings from smaller subsamples (n = 2500 and 500) when statistical power of the logistic regression became attenuated. Moreover, ShapleyVIC reasonably estimated non-significant importance of race to justify its exclusion from the final prediction model, as opposed to the race-dependent model from the conventional stepwise model building. Hence, ShapleyVIC is robust and interpretable for variable importance assessment, with potential contribution to fairer clinical risk prediction.
Copyright: © 2024 Ning et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
MEH Ong reports an advisory relationship with Global Healthcare SG, a commercial entity that manufactures cooling devices. MEH Ong has a licensing agreement and a patent filed (Application no: 13/047,348) with ZOLL Medical Corporation for a study titled "Method of predicting acute cardiopulmonary events and survivability of a patient". All other authors have no conflict of interests to declare.
Figures



References
LinkOut - more resources
Full Text Sources