Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1985 Oct;44(13):2846-50.

Renal nerves and hypertension: an update

  • PMID: 3899731
Review

Renal nerves and hypertension: an update

R E Katholi. Fed Proc. 1985 Oct.

Abstract

Increased efferent renal sympathetic nerve activity could facilitate the development of hypertension by shifting the arterial pressure-renal sodium excretion curve to the right. Accordingly, interruption of the renal nerves should prevent the development of hypertension in animal models in which increased sympathetic nervous system activity has been implicated. Renal denervation delays the development of hypertension and results in greater sodium excretion in the Okamoto and New Zealand spontaneously hypertensive rat and in the deoxycorticosterone acetate-salt-treated rat, which suggests that these responses result from, at least in part, loss of efferent renal nerve activity. Similar sympathetically mediated renal vasoconstriction has been implicated in the pathogenesis of early essential hypertension in humans. The efferent renal sympathetic nerves play a diminishing role once hypertension is established in these models. Renal denervation in established one-kidney, one-clip and two-kidney, one-clip Goldblatt hypertension in the rat and chronic coarctation in the dog results in an attenuation of the hypertension. The depressor effect of renal denervation in these models is not caused by changes in renin activity or sodium excretion but is associated with decreased sympathoadrenal activity. These findings suggest that the afferent renal nerves contribute to the pathogenesis of renovascular hypertension by enhancing the activity of the sympathetic nervous system. Interruption of afferent renal fibers also appears to be the mechanism by which renal denervation prevents or reverses the normal increase in arterial pressure seen after aortic baroreceptor deafferentation in the rat.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources