Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Oct 15;260(23):12720-4.

Pathways for the incorporation of exogenous fatty acids into phosphatidylethanolamine in Escherichia coli

  • PMID: 3900077
Free article
Comparative Study

Pathways for the incorporation of exogenous fatty acids into phosphatidylethanolamine in Escherichia coli

C O Rock et al. J Biol Chem. .
Free article

Abstract

Two distinct pathways for the incorporation of exogenous fatty acids into phospholipids were identified in Escherichia coli. The predominant route originates with the activation of fatty acids by acyl-CoA synthetase followed by the distribution of the acyl moieties into all phospholipid classes via the sn-glycerol-3-phosphate acyltransferase reaction. This pathway was blocked in mutants (fadD) lacking acyl-CoA synthetase activity. In fadD strains, exogenous fatty acids were introduced exclusively into the 1-position of phosphatidylethanolamine. This secondary route is related to 1-position fatty acid turnover in phosphatidylethanolamine and proceeds via the acyl-acyl carrier protein synthetase/2-acylglycerophosphoethanolamine acyltransferase system. The turnover pathway exhibited a preference for saturated fatty acids, whereas the acyl-CoA synthetase-dependent pathway was less discriminating. Both pathways were inhibited in mutants (fadL) lacking the fatty acid permease, demonstrating that the fadL gene product translocates exogenous fatty acids to an intracellular pool accessible to both synthetases. These data demonstrate that acyl-CoA synthetase is not required for fatty acid transport in E. coli and that the metabolism of exogenous fatty acids is segregated from the metabolism of acyl-acyl carrier proteins derived from fatty acid biosynthesis.

PubMed Disclaimer

Publication types

LinkOut - more resources