Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Jul 4:2024.07.02.601733.
doi: 10.1101/2024.07.02.601733.

FABP4-mediated lipid accumulation and lipolysis in tumor associated macrophages promote breast cancer metastasis

FABP4-mediated lipid accumulation and lipolysis in tumor associated macrophages promote breast cancer metastasis

Matthew Yorek et al. bioRxiv. .

Update in

Abstract

A high density of tumor-associated macrophages (TAMs) is associated with poorer prognosis and survival in breast cancer patients. Recent studies have shown that lipid accumulation in TAMs can promote tumor growth and metastasis in various models. However, the specific molecular mechanisms that drive lipid accumulation and tumor progression in TAMs remain largely unknown. Herein, we demonstrated that unsaturated fatty acids (FAs), unlike saturated ones, are more likely to form lipid droplets in macrophages. Specifically, unsaturated FAs, including linoleic acids (LA), activate the FABP4/CEBPα pathway, leading to triglyceride synthesis and lipid droplet formation. Furthermore, FABP4 enhances lipolysis and FA utilization by breast cancer cells, which promotes cancer cell migration in vitro and metastasis in vivo . Notably, a deficiency of FABP4 in macrophages significantly reduces LA-induced lipid metabolism. Therefore, our findings suggest FABP4 as a crucial lipid messenger that facilitates unsaturated FA-mediated lipid accumulation and lipolysis in TAMs, thus contributing to the metastasis of breast cancer.

Highlights: Unlike saturated fatty acids, unsaturated fatty acids preferentially promote lipid droplet formation in macrophages.Unsaturated fatty acids activate the FABP4/CEBPα axis for neutral lipid biosynthesis in macrophagesDeficiency of FABP4 compromised unsaturated fatty acid-mediated lipid accumulation and utilization in macrophagesFABP4-mediated lipid metabolism in macrophages contributes to breast cancer metastasis.

PubMed Disclaimer

Publication types

LinkOut - more resources