Engineering a nanoscale liposome-in-liposome for in situ biochemical synthesis and multi-stage release
- PMID: 39009794
- PMCID: PMC11446840
- DOI: 10.1038/s41557-024-01584-z
Engineering a nanoscale liposome-in-liposome for in situ biochemical synthesis and multi-stage release
Abstract
Soft-matter nanoscale assemblies such as liposomes and lipid nanoparticles have the potential to deliver and release multiple cargos in an externally stimulated and site-specific manner. Such assemblies are currently structurally simplistic, comprising spherical capsules or lipid clusters. Given that form and function are intertwined, this lack of architectural complexity restricts the development of more sophisticated properties. To address this, we have devised an engineering strategy combining microfluidics and conjugation chemistry to synthesize nanosized liposomes with two discrete compartments, one within another, which we term concentrisomes. We can control the composition of each bilayer and tune both particle size and the dimensions between inner and outer membranes. We can specify the identity of encapsulated cargo within each compartment, and the biophysical features of inner and outer bilayers, allowing us to imbue each bilayer with different stimuli-responsive properties. We use these particles for multi-stage release of two payloads at defined time points, and as attolitre reactors for triggered in situ biochemical synthesis.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures






Similar articles
-
Liposomes containing nanoparticles: preparation and applications.Colloids Surf B Biointerfaces. 2022 Oct;218:112737. doi: 10.1016/j.colsurfb.2022.112737. Epub 2022 Jul 28. Colloids Surf B Biointerfaces. 2022. PMID: 35933888 Review.
-
Calcium molybdate nanoparticles formation in egg phosphatidyl choline based liposome caused by liposome fusion.J Colloid Interface Sci. 2018 Nov 15;530:473-480. doi: 10.1016/j.jcis.2018.07.007. Epub 2018 Jul 4. J Colloid Interface Sci. 2018. PMID: 29990783
-
Microfluidic methods for production of liposomes.Methods Enzymol. 2009;465:129-41. doi: 10.1016/S0076-6879(09)65007-2. Methods Enzymol. 2009. PMID: 19913165 Free PMC article.
-
Stimuli-responsive liposome-nanoparticle assemblies.Expert Opin Drug Deliv. 2011 Aug;8(8):1025-40. doi: 10.1517/17425247.2011.584868. Epub 2011 Jun 11. Expert Opin Drug Deliv. 2011. PMID: 21663539 Review.
-
Insertion of nanoparticle clusters into vesicle bilayers.ACS Nano. 2014 Apr 22;8(4):3451-60. doi: 10.1021/nn406349z. Epub 2014 Mar 13. ACS Nano. 2014. PMID: 24611878
Cited by
-
Regulating Biocondensates within Synthetic Cells via Segregative Phase Separation.ACS Nano. 2025 Jun 10;19(22):20550-20563. doi: 10.1021/acsnano.4c18971. Epub 2025 Apr 28. ACS Nano. 2025. PMID: 40293809 Free PMC article.
-
Building a Synthetic Cell Together.Nat Commun. 2025 Aug 12;16(1):7488. doi: 10.1038/s41467-025-62778-8. Nat Commun. 2025. PMID: 40796565 Free PMC article. Review.
-
Co-Encapsulation of Multiple Antineoplastic Agents in Liposomes by Exploring Microfluidics.Int J Mol Sci. 2025 Apr 17;26(8):3820. doi: 10.3390/ijms26083820. Int J Mol Sci. 2025. PMID: 40332493 Free PMC article. Review.
-
Multi-compartment liposomes forge new paths in drug delivery.Nat Chem. 2024 Oct;16(10):1578-1579. doi: 10.1038/s41557-024-01638-2. Nat Chem. 2024. PMID: 39317824 No abstract available.
-
Assembling Ruthenium Complexes to Form Ruthenosome Unleashing Ferritinophagy-Mediated Tumor Suppression.ACS Nano. 2025 Mar 18;19(10):10207-10219. doi: 10.1021/acsnano.4c17344. Epub 2025 Mar 5. ACS Nano. 2025. PMID: 40040589
References
-
- Lou, J., Schuster, J. A., Barrera, F. N. & Best, M. D. ATP-responsive liposomes via screening of lipid switches designed to undergo conformational changes upon binding phosphorylated metabolites. J. Am. Chem. Soc.144, 3746–3756 (2022). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources