Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2024 Aug;67(8):939-946.
doi: 10.1007/s00103-024-03914-5. Epub 2024 Jul 16.

Comparison of fatalities due to COVID-19 and other nonexternal causes during the first five pandemic waves : Results from multiple cause of death statistics in Bavaria

Affiliations
Comparative Study

Comparison of fatalities due to COVID-19 and other nonexternal causes during the first five pandemic waves : Results from multiple cause of death statistics in Bavaria

Andrea Buschner et al. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2024 Aug.

Erratum in

Abstract

Background: Older age is a risk factor for a fatal course of SARS-CoV‑2 infection, possibly due to comorbidities whose exact role in this context, however, is not yet well understood. In this paper, the characteristics and comorbidities of persons who had died of COVID-19 in Bavaria by July 2022 are shown and compared with the characteristics of other fatalities during the pandemic.

Methods: Based on data from multiple cause of death statistics, odds ratios for dying from COVID-19 (compared to dying from other nonexternal causes of death) were calculated by using logistic regression models, stratified by age, sex, and pandemic waves.

Results: In Bavaria, a total of 24,479 persons (6.5% of all deaths) officially died from COVID-19 between March 2020 and July 2022. In addition to increasing age and male sex, preexisting diseases and comorbidities such as obesity, degenerative diseases of the nervous system, dementia, renal insufficiency, chronic lower respiratory diseases, and diabetes mellitus were significantly associated with COVID-19-related deaths. Dementia was mainly associated with increased COVID-19 mortality during the first and second waves, while obesity was strongly associated during the fourth wave.

Discussion: The frequency of specific comorbidities in COVID-19 deaths varied over the course of the pandemic. This suggests that wave-specific results also need to be interpreted against the background of circulating virus variants, changing immunisation levels, and nonpharmaceutical interventions in place at the time.

Zusammenfassung: HINTERGRUND: Ein höheres Alter stellt einen Risikofaktor für einen tödlichen Verlauf einer SARS-CoV-2-Infektion dar, möglicherweise bedingt durch Komorbiditäten, deren genaue Rolle in diesem Kontext jedoch noch nicht gut verstanden ist. Im vorliegenden Beitrag werden Charakteristika sowie Komorbiditäten der bis Juli 2022 in Bayern an COVID-19 Verstorbenen im Pandemieverlauf aufgezeigt und mit den Merkmalen anderer Verstorbener verglichen.

Methoden: Basierend auf Daten der amtlichen Todesursachenstatistik wurden mit Hilfe logistischer Regressionsmodelle Odds-Ratios für das Versterben an COVID-19 (im Vergleich zum Versterben an anderen natürlichen Todesursachen) stratifiziert nach Alter, Geschlecht und Pandemiewellen berechnet.

Ergebnisse: In Bayern verstarben von März 2020 bis Juli 2022 offiziell insgesamt 24.479 Personen (6,5 % aller Sterbefälle) an COVID-19. Neben zunehmendem Alter und männlichem Geschlecht waren Vor- und Begleiterkrankungen wie Adipositas, degenerative Erkrankungen des Nervensystems, Demenz, Niereninsuffizienz, chronische Erkrankungen der unteren Atemwege und Diabetes mellitus signifikant mit COVID-19-bedingtem Versterben assoziiert. Demenz war hauptsächlich in der ersten und zweiten Welle, Adipositas besonders stark während der vierten Welle mit erhöhter COVID-19-Sterblichkeit assoziiert.

Diskussion: Die Häufigkeit bestimmter Komorbiditäten bei Personen, die an COVID-19 verstorben sind, variierte im Pandemieverlauf. Dies deutet darauf hin, dass wellenspezifische Ergebnisse auch vor dem Hintergrund zirkulierender Virusvarianten, sich verändernder Immunisierungsgrade und der zum jeweiligen Zeitpunkt geltenden Schutzmaßnahmen interpretiert werden müssen.

Keywords: Comorbidities; Mortality; Preexisting diseases; SARS-CoV-2; Wave-specific causes of death.

PubMed Disclaimer

Conflict of interest statement

A. Buschner, K. Katz, and A. Beyerlein declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Absolute number of deaths in thousands (including all nonexternal and external causes of death; orange) and number of COVID-19 deaths in thousands (blue) for January 2020 to July 2022 in Bavaria according to the official cause of death statistics. The pandemic waves were defined following the retrospective phase classification of the Robert Koch Institute [2]. Source: own figure
Fig. 2
Fig. 2
Age-specific COVID-19 mortality rates for March 2020 to July 2022 in Bavaria (per 100,000 inhabitants in the corresponding age/sex group) according to the official cause of death statistics. Source: own figure
Fig. 3
Fig. 3
Age distribution of COVID-19 deaths (in percentages and absolute numbers) in Bavaria according to the official cause of death statistics, stratified by pandemic waves following the retrospective phase classification of the Robert Koch Institute [2]. Source: own figure
Fig. 4
Fig. 4
Most frequent comorbidities and previous diseases of persons ≥ 65 years with underlying cause (UC) COVID-19 compared to other nonexternal causes of death between March 2020 and July 2022 in Bavaria (in percent) according to the official cause of death statistics. Asterisk indicates lack of secondary neoplasm. Source: own figure.
Fig. 5
Fig. 5
Mutually adjusted odds ratios with 95% confidence intervals for dying from COVID-19 compared to dying from another nonexternal cause of death for men (blue) and women (red) in Bavaria (March 2020—July 2022) according to the official cause of death statistics. Asterisk indicates lack of secondary neoplasm. Source: own figure

References

    1. Böhmer MM, Buchholz U, Corman VM et al (2020) Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. Lancet Infect Dis 20:920–928. https://doi.org/10.1016/S1473–3099(20)30314‑5 - PMC - PubMed
    1. Tolksdorf K, Loenenbach A, Buda S (2022) Dritte Aktualisierung der „Retrospektiven Phaseneinteilung der COVID-19-Pandemie in Deutschland“. Epid Bull 38:3–6
    1. Gomes D, Beyerlein A, Katz K et al (2021) Is the BNT162b2 COVID-19 vaccine effective in elderly populations? Results from population data from Bavaria, Germany. PLoS ONE 16:e259370. 10.1371/journal.pone.0259370 - PMC - PubMed
    1. Koch J, Piechotta V, Berner R et al (2023) Empfehlung der STIKO zur Implementierung der COVID-19-Impfung in die Empfehlungen der STIKO 2023 und die dazugehörige wissenschaftliche Begründung. Epid Bull 21:7–48
    1. Andre M, Lau LS, Pokharel MD et al (2023) From alpha to omicron: how different variants of concern of the SARS-coronavirus‑2 impacted the world. Biology (1210.3390/biology12091267) - PMC - PubMed

Publication types

LinkOut - more resources