Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 1:261:121917.
doi: 10.1016/j.watres.2024.121917. Epub 2024 Jun 10.

Achieving realistic ozonation conditions with synthetic water matrices comprising low-molecular-weight scavenger compounds

Affiliations
Free article

Achieving realistic ozonation conditions with synthetic water matrices comprising low-molecular-weight scavenger compounds

Simon A Rath et al. Water Res. .
Free article

Abstract

Ozonation is used worldwide for drinking water disinfection and increasingly also for micropollutant abatement from wastewater. Identification of transformation products formed during the ozonation of micropollutants is challenging due to several factors including (i) the reactions of both oxidants, ozone and hydroxyl radicals with the micropollutants, as well as with intermediate transformation products, (ii) effects of the water matrix on the ozone and hydroxyl radical chemistry and (iii) the generation of oxidation by-products. In this study, a simple approach to achieve realistic ozonation conditions in the absence of dissolved organic matter has been developed. It is based on composing synthetic water matrices with low-molecular-weight scavenger compounds (phenol, methanol, acetate, and carbonate) that mimic the chemical interactions of ozone and hydroxyl radicals with real water matrices. Synthetic waters composed of only four low-molecular-weight compounds successfully replicated two lake waters and two secondary wastewater effluents, matching instantaneous ozone demand, ozone and hydroxyl radical exposures in the initial phase, as well as the ozone evolution in the second phase of the ozonation process. The synthetic water matrices also reproduced the effects of temperature and pH changes observed in real waters. The abatement of two micropollutants, bezafibrate and atrazine, and the formation of the corresponding transformation products during ozonation were in agreement for synthetic and real waters. Furthermore, the kinetics and extent of bromate formation during ozonation in synthetic water were comparable to real lake water and wastewater. This supports the robustness of the proposed approach because bromate formation is very sensitive to the interplay of ozone and hydroxyl radicals. Furthermore, with the novel reaction system, a significant effect of hydroxyl radicals scavenging by carbonate on bromate formation was demonstrated. Overall, the herein-developed approach based on synthetic water matrices allows to perform realistic ozonation studies including both oxidants, ozone and hydroxyl radicals, without the constraints of using dissolved organic matter.

Keywords: Bromate; Hydroxyl radical; Micropollutant oxidation and transformation products; Ozone; Synthetic water matrix; Water and wastewater treatment.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Simon A. Rath reports financial support was provided by Swiss National Science Foundation. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources