Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun;109(6-1):064103.
doi: 10.1103/PhysRevE.109.064103.

Evaluating extractable work of quantum batteries via entropic uncertainty relations

Affiliations

Evaluating extractable work of quantum batteries via entropic uncertainty relations

Meng-Long Song et al. Phys Rev E. 2024 Jun.

Abstract

In this study, we investigate the effectiveness of entropic uncertainty relations (EURs) in discerning the energy variation in quantum batteries (QBs) modelled by battery-charger field in the presence of bosonic and fermionic reservoirs. Our results suggest that the extractable works (exergy and ergotropy) have versatile characteristics in different scenarios, resulting in a complex relationship between tightness and extractable work. It is worth noting that the tightness of the lower bound of entropic uncertainty can be a good indicator for energy conversion efficiency in charging QBs. Furthermore, we disclose how the EUR including uncertainty and lower bound contributes to energy conversion efficiency in the QB system. It is believed that these findings will be beneficial for better understanding the role of quantum uncertainty in evaluating quantum battery performance.

PubMed Disclaimer