Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May 12;5(7):665-667.
doi: 10.1002/bco2.373. eCollection 2024 Jul.

Evaluating a deep learning AI algorithm for detecting residual prostate cancer on MRI after focal therapy

Affiliations

Evaluating a deep learning AI algorithm for detecting residual prostate cancer on MRI after focal therapy

David G Gelikman et al. BJUI Compass. .

Erratum in

  • Erratum.
    [No authors listed] [No authors listed] BJUI Compass. 2024 Dec 30;5(12):1324-1329. doi: 10.1002/bco2.482. eCollection 2024 Dec. BJUI Compass. 2024. PMID: 39744071 Free PMC article.
No abstract available

Keywords: artificial intelligence; focal therapy; prostate cancer.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

FIGURE 1
FIGURE 1
Biparametric MRI (bpMRI) of a 75‐year‐old patient post‐cryoablation with a serum PSA of 3.68 ng/ml. Axial MRI shows a homogenously hypointense lesion in the right mid anterior transition zone (arrow) on T2‐weighted MRI (A), hyperintensity on high b‐value (b = 1500 s/mm2) diffusion‐weighted MRI (B), hypointensity on apparent diffusion coefficient map (C), and binary lesion prediction model overlay on T2‐weighted image, with suspicious lesion predicted in red (D). MRI/TRUS fusion guided biopsy of this lesion demonstrated Gleason Grade Group 2 prostate cancer.

References

    1. Turkbey B, Haider MA. Artificial intelligence for automated cancer detection on prostate MRI: opportunities and ongoing challenges, from the AJR special series on AI applications. AJR Am. J. Roentgenol. 2022;219(2):188–194. 10.2214/AJR.21.26917 - DOI - PubMed
    1. Mehralivand S, Harmon SA, Shih JH, Smith CP, Lay N, Argun B, et al. Multicenter multireader evaluation of an artificial intelligence‐based attention mapping system for the detection of prostate cancer with multiparametric MRI. AJR Am. J. Roentgenol. 2020;215(4):903–912. 10.2214/AJR.19.22573 - DOI - PMC - PubMed
    1. Dai Z, Jambor I, Taimen P, Pantelic M, Elshaikh M, Dabaja A, et al. Prostate cancer detection and segmentation on MRI using non‐local mask R‐CNN with histopathological ground truth. Med. Phys. 2023;50(12):7748–7763. 10.1002/mp.16557 - DOI - PubMed
    1. Khandwala YS, Morisetty S, Ghanouni P, Fan RE, Soerensen SJC, Rusu M, et al. Evaluation of post‐ablation mpMRI as a predictor of residual prostate cancer after focal high intensity focused ultrasound (HIFU) ablation. Urol. Oncol. 2022;40(11):489.e9–489.e17. 10.1016/j.urolonc.2022.07.017 - DOI - PMC - PubMed
    1. Mehralivand S, Yang D, Harmon SA, Xu D, Xu Z, Roth H, et al. A cascaded deep learning‐based artificial intelligence algorithm for automated lesion detection and classification on biparametric prostate magnetic resonance imaging. Acad. Radiol. 2022;29(8):1159–1168. 10.1016/j.acra.2021.08.019 - DOI - PMC - PubMed

LinkOut - more resources