Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Sep;89(5):255-263.
doi: 10.1111/ahg.12572. Epub 2024 Jul 18.

Methods for multiancestry genome-wide association study meta-analysis

Affiliations
Review

Methods for multiancestry genome-wide association study meta-analysis

Chuan Fu Yap et al. Ann Hum Genet. 2025 Sep.

Abstract

Genome-wide association studies (GWAS) have significantly enhanced our understanding of the genetic basis of complex diseases. Despite the technological advancements, gaps in our understanding remain, partly due to small effect sizes and inadequate coverage of genetic variation. Multiancestry GWAS meta-analysis (MAGMA) addresses these challenges by integrating genetic data from diverse populations, thereby increasing power to detect loci and improving fine-mapping resolution to identify causal variants across different ancestry groups. This review provides an overview of the protocols, statistical methods, and software of MAGMA, as well as highlighting some challenges associated with this approach.

Keywords: genetic variation; genome‐wide association studies; meta‐analysis; multiancestry; software.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Aschard, H. , Vilhjálmsson, B. J. , Joshi, A. D. , Price, A. L. , & Kraft, P. (2015). Adjusting for heritable covariates can bias effect estimates in genome‐wide association studies. American Journal of Human Genetics, 96(2), 329–339. 10.1016/j.ajhg.2014.12.021 - DOI - PMC - PubMed
    1. Banda, Y. , Kvale, M. N. , Hoffmann, T. J. , Hesselson, S. E. , Ranatunga, D. , Tang, H. , Sabatti, C. , Croen, L. A. , Dispensa, B. P. , Henderson, M. , Iribarren, C. , Jorgenson, E. , Kushi, L. H. , Ludwig, D. , Olberg, D. , Quesenberry, C. P., Jr. , Rowell, S. , Sadler, M. , Sakoda, L. C. , … Risch, N. (2015). Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics, 200(4), 1285–1295. 10.1534/genetics.115.178616 - DOI - PMC - PubMed
    1. Begum, F. , Ghosh, D. , Tseng, G. C. , & Feingold, E. (2012). Comprehensive literature review and statistical considerations for GWAS meta‐analysis. Nucleic Acids Research, 40(9), 3777–3784. 10.1093/nar/gkr1255 - DOI - PMC - PubMed
    1. Cavazos, T. B. , & Witte, J. S. (2021). Inclusion of variants discovered from diverse populations improves polygenic risk score transferability. HGG Advances, 2(1), 100017. 10.1016/j.xhgg.2020.100017 - DOI - PMC - PubMed
    1. Choudhury, A. , Brandenburg, J.‐T. , Chikowore, T. , Sengupta, D. , Boua, P. R. , Crowther, N. J. , Agongo, G. , Asiki, G. , Gómez‐Olivé, F. X. , Kisiangani, I. , Maimela, E. , Masemola‐Maphutha, M. , Micklesfield, L. K. , Nonterah, E. A. , Norris, S. A. , Sorgho, H. , Tinto, H. , Tollman, S. , Graham, S. E. , … Consortium, H. A. (2022). Meta‐analysis of sub‐Saharan African studies provides insights into genetic architecture of lipid traits. Nature Communications, 13(1), 2578. 10.1038/s41467-022-30098-w - DOI - PMC - PubMed

LinkOut - more resources