Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2024 Sep:164:105811.
doi: 10.1016/j.neubiorev.2024.105811. Epub 2024 Jul 18.

Neurophysiological effects of acute aerobic exercise in young adults: a systematic review and meta-analysis

Affiliations
Free article
Meta-Analysis

Neurophysiological effects of acute aerobic exercise in young adults: a systematic review and meta-analysis

Layale Youssef et al. Neurosci Biobehav Rev. 2024 Sep.
Free article

Abstract

Evidence continues to accumulate that acute aerobic exercise (AAE) impacts neurophysiological excitability as measured by transcranial magnetic stimulation (TMS). Yet, uncertainty exists about which TMS measures are modulated after AAE in young adults. The influence of AAE intensity and duration of effects are also uncertain. This pre-registered meta-analysis (CRD42017065673) addressed these uncertainties by synthesizing data from 23 studies (including 474 participants) published until February 2024. Meta-analysis was run using a random-effects model and Hedge's g used as effect size. Our results demonstrated a decrease in short-interval intracortical inhibition (SICI) following AAE (g = 0.27; 95 % CI [0.16-0.38]; p <.0001), particularly for moderate (g = 0.18; 95 % CI [0.05-0.31]; p <.01) and high (g = 0.49; 95 % CI [0.27-0.71]; p <.0001) AAE intensities. These effects remained for 30 minutes after AAE. Additionally, increased corticospinal excitability was only observed for high intensity AAE (g = 0.28; 95 % CI, [0.07-0.48]; p <.01). Our results suggest potential mechanisms for inducing a more susceptible neuroplastic environment following AAE.

Keywords: Acute aerobic exercise; Corticospinal excitability; Cycling; Intracortical inhibition; SICI; TMS.

PubMed Disclaimer