Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2024 Sep:113:110233.
doi: 10.1016/j.clinimag.2024.110233. Epub 2024 Jul 14.

Reliability assessment of leg length and angular alignment on manual reads versus artificial intelligence-generated lower extremity radiographic measurements

Affiliations
Comparative Study

Reliability assessment of leg length and angular alignment on manual reads versus artificial intelligence-generated lower extremity radiographic measurements

Holden Archer et al. Clin Imaging. 2024 Sep.

Abstract

Purpose: Leg length discrepancy (LLD) and lower extremity malalignment can lead to pain and osteoarthritis. A variety of radiographic parameters are used to assess LLD and alignment. A 510(k) FDA approved artificial intelligence (AI) software locates landmarks on full leg standing radiographs and performs several measurements. The objective of this study was to assess the reliability of this AI tool compared to three manual readers.

Methods: A sample of 320 legs was used. Three readers' measurements were compared to AI output for hip-knee-angle (HKA), anatomical-tibiofemoral angle (aTFA), anatomical-mechanical-axis angle (AMA), joint-line-convergence angle (JLCA), mechanical-lateral-proximal-femur-angle (mLPFA), mechanical-lateral-distal-femur-angle (mLDFA), mechanical-medial-proximal-tibia-angle (mMPTA), mechanical-lateral-distal-tibia- angle (mLDTA), femur length, tibia length, full leg length, leg-length-discrepancy (LLD), and mechanical-axis-deviation (MAD). Intraclass correlation coefficients (ICCs) and Bland-Altman analysis were used to track performance.

Results: AI output was successfully produced for 272/320 legs in the study. The reader versus AI pairwise ICCs were mostly in the excellent range: 12/13, 12/13, and 9/13 variables were in the excellent range (ICC > 0.75) for readers 1, 2, and 3, respectively. There was better agreement for leg length, femur length, tibia length, LLD, and HKA than for other variables. The median reading times for the three readers and AI were 250, 282, 236, and 38 s, respectively.

Conclusion: This study showed that AI-based software provides reliable assessment of LLD and lower extremity alignment with substantial time savings.

Keywords: Artificial intelligence; Deep learning; Knee deformities; Leg length discrepancy; Radiographs.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflict of interest.

Publication types

LinkOut - more resources