Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 2;39(9):1340-1355.
doi: 10.1093/jbmr/zjae105.

Impact of the SIK3 pathway inhibition on osteoclast differentiation via oxidative phosphorylation

Affiliations

Impact of the SIK3 pathway inhibition on osteoclast differentiation via oxidative phosphorylation

Katsuhiko Kamei et al. J Bone Miner Res. .

Abstract

Maintenance of bone homeostasis and the balance between bone resorption and formation are crucial for maintaining skeletal integrity. This study sought to investigate the role of salt-inducible kinase 3 (SIK3), a key regulator in cellular energy metabolism, during the differentiation of osteoclasts. Despite osteoclasts being high energy-consuming cells essential for breaking down mineralized bone tissue, the specific function of SIK3 in this process remains unclear. To address this issue, we generated osteoclast-specific SIK3 conditional knockout mice and assessed the impact of SIK3 deletion on bone homeostasis. Our findings revealed that SIK3 conditional knockout mice exhibited increased bone mass and an osteopetrosis phenotype, suggesting a pivotal role for SIK3 in bone resorption. Moreover, we assessed the impact of pterosin B, a SIK3 inhibitor, on osteoclast differentiation. The treatment with pterosin B inhibited osteoclast differentiation, reduced the numbers of multinucleated osteoclasts, and suppressed resorption activity in vitro. Gene expression analysis demonstrated that SIK3 deletion and pterosin B treatment influence a common set of genes involved in osteoclast differentiation and bone resorption. Furthermore, pterosin B treatment altered intracellular metabolism, particularly affecting key metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation. These results provide valuable insights into the involvement of SIK3 in osteoclast differentiation and the molecular mechanisms underlying osteoclast function and bone diseases.

Keywords: mitochondria; mitochondrial respiration; osteoclasts; oxidative phosphorylation; salt-inducible kinase 3.

Plain language summary

Osteoporosis is a disease that causes bones to become weak and fragile, increasing the risk of fractures especially in elderly. It is caused by an imbalance between the formation of new bone and the destruction of old bone. Cells called osteoclasts are responsible for breaking down old bone. Excessive osteoclast activity results in bone loss and osteoporosis. Our research has identified a LKB1-SIK3 pathway, which acts as an energy sensor in osteoclasts. We found that this pathway is activated when osteoclast activity is increased, and we were able to reduce osteoclast activity by genetically removing or inhibiting SIK3. These findings suggest that targeting the LKB1-SIK3 pathway may be a promising new approach for the treatment of osteoporosis. Developing drugs that inhibit SIK3 may slow bone loss and reduce the risk of fractures in osteoporotic patients.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances