Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 31;16(30):40231-40242.
doi: 10.1021/acsami.4c07843. Epub 2024 Jul 21.

Self-Driven Gas Spreading on Mesh Surfaces for Regeneration of Underwater Superhydrophobicity

Affiliations

Self-Driven Gas Spreading on Mesh Surfaces for Regeneration of Underwater Superhydrophobicity

Jiaming Wang et al. ACS Appl Mater Interfaces. .

Abstract

Underwater superhydrophobic surfaces stand as a promising frontier in technological applications such as drag reduction, antifouling, and anticorrosion. Unfortunately, the air film, known as the plastron, on these surfaces tends to be unstable. To address this problem, active approaches have been designed to preserve or restore plastrons. In this work, a self-driven gas spreading superhydrophobic mesh (SHM) surface is designed to facilitate recovery of the plastron. The immersed SHM can be "wetted" by gas, even when the plastron is removed. We demonstrate that the injected gas can spread spontaneously along the SHM over a large area, which greatly simplifies the plastron replenishment process. By incorporating a locally coated gas-producing layer, we achieve rapid in situ plastron recovery and long-term immersion stability, extending the plastron lifespan by at least 48 times. We also provide a framework for designing an SHM with suitable structural dimensions for gas spreading. Furthermore, an SHM with asymmetric structural dimensions enables unidirectional gas transport by the capillary pressure difference. This SHM surface shows excellent drag reduction properties (37.2%) and has a high slip recovery coefficient (73.4%) after plastron loss. This facile and scalable method is expected to broaden the range of potential applications involving nonwetting-related fields.

Keywords: drag reduction; plastron regeneration; scalable method; self-driven; superhydrophobic.

PubMed Disclaimer

LinkOut - more resources