Deep learning-based IDH1 gene mutation prediction using histopathological imaging and clinical data
- PMID: 39038392
- DOI: 10.1016/j.compbiomed.2024.108902
Deep learning-based IDH1 gene mutation prediction using histopathological imaging and clinical data
Abstract
In the field of histopathology, many studies on the classification of whole slide images (WSIs) using artificial intelligence (AI) technology have been reported. We have studied the disease progression assessment of glioma. Adult-type diffuse gliomas, a type of brain tumor, are classified into astrocytoma, oligodendroglioma, and glioblastoma. Astrocytoma and oligodendroglioma are also called low grade glioma (LGG), and glioblastoma is also called glioblastoma multiforme (GBM). LGG patients frequently have isocitrate dehydrogenase (IDH) mutations. Patients with IDH mutations have been reported to have a better prognosis than patients without IDH mutations. Therefore, IDH mutations are an essential indicator for the classification of glioma. That is why we focused on the IDH1 mutation. In this paper, we aimed to classify the presence or absence of the IDH1 mutation using WSIs and clinical data of glioma patients. Ensemble learning between the WSIs model and the clinical data model is used to classify the presence or absence of IDH1 mutation. By using slide level labels, we combined patch-based imaging information from hematoxylin and eosin (H & E) stained WSIs, along with clinical data using deep image feature extraction and machine learning classifier for predicting IDH1 gene mutation prediction versus wild-type across cohort of 546 patients. We experimented with different deep learning (DL) models including attention-based multiple instance learning (ABMIL) models on imaging data along with gradient boosting machine (LightGBM) for the clinical variables. Further, we used hyperparameter optimization to find the best overall model in terms of classification accuracy. We obtained the highest area under the curve (AUC) of 0.823 for WSIs, 0.782 for clinical data, and 0.852 for ensemble results using MaxViT and LightGBM combination, respectively. Our experimental results indicate that the overall accuracy of the AI models can be improved by using both clinical data and images.
Keywords: Brain glioma; Clinical data; Deep learning; Digital pathology; Fusion model; Gene mutation; Weakly supervised.
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
