Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 31;146(30):20550-20555.
doi: 10.1021/jacs.4c05037. Epub 2024 Jul 22.

Epitaxial Core/Shell Nanocrystals of (Europium-Doped) Zirconia and Hafnia

Affiliations

Epitaxial Core/Shell Nanocrystals of (Europium-Doped) Zirconia and Hafnia

Carlotta Seno et al. J Am Chem Soc. .

Abstract

A careful design of the nanocrystal architecture can strongly enhance the nanocrystal function. So far, this strategy has faced a synthetic bottleneck in the case of refractory oxides. Here we demonstrate the epitaxial growth of hafnia shells onto zirconia cores and pure zirconia shells onto europium-doped zirconia cores. The core/shell structures are fully crystalline. Upon shelling, the optical properties of the europium dopant are dramatically improved (featuring a more uniform coordination and a longer photoluminescence lifetime), indicating the suppression of nonradiative pathways. These results launch the stable zirconium and hafnium oxide hosts as alternatives for the established NaYF4 systems.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(A) ZrO2 core and ZrO2/HfO2 core/shell synthesis procedure, where the metal chloride, tetrahydrofuran, propene, and isopropanol are obtained as byproducts., (B, C) BF TEM images of (B) ZrO2 cores and (C) ZrO2/HfO2 core/shells. The histograms are based on more than 100 particles. (D) Solution 31P NMR spectra of ZrO2 and ZrO2/HfO2 NCs.
Figure 2
Figure 2
(A) HAADF STEM image of a core/shell ZrO2/HfO2 nanocrystal, the corresponding power spectrum (FFT) analysis in the reciprocal space along the [010] zone axis, and the frequency-filtered map HAADF STEM image. (B) HAADF STEM image of several ZrO2/HfO2 nanocrystals and the corresponding EDX compositional maps featuring hafnium and zirconium.
Figure 3
Figure 3
(A) ZrO2:Eu core and ZrO2:Eu/ZrO2 core/shell syntheses. (B, C) BF TEM images of (B) ZrO2:Eu cores and (C) ZrO2:Eu/ZrO2 core/shells. The histograms are based on more than 100 particles.
Figure 4
Figure 4
(A) Photoluminescence emission spectra and (B) lifetime decays at various emission wavelengths of ZrO2:Eu cores and ZrO2:Eu/ZrO2 core/shells, excited at 238 nm. The measurements were carried out at room temperature in cyclohexane with an absorbance of 0.1 at 238 nm.

References

    1. Van den Eynden D.; Pokratath R.; De Roo J. Nonaqueous Chemistry of Group 4 Oxo Clusters and Colloidal Metal Oxide Nanocrystals. Chem. Rev. 2022, 122 (11), 10538–10572. 10.1021/acs.chemrev.1c01008. - DOI - PubMed
    1. Tao P.; Li Y.; Siegel R. W.; Schadler L. S. Transparent dispensible high-refractive index ZrO2/epoxy nanocomposites for LED encapsulation. J. Appl. Polym. Sci. 2013, 130 (5), 3785–3793. 10.1002/app.39652. - DOI
    1. Liu C.; Hajagos T. J.; Chen D.; Chen Y.; Kishpaugh D.; Pei Q. Efficient one-pot synthesis of colloidal zirconium oxide nanoparticles for high-refractive-index nanocomposites. ACS Appl. Mater. Interfaces 2016, 8 (7), 4795–4802. 10.1021/acsami.6b00743. - DOI - PubMed
    1. De Keukeleere K.; Cayado P.; Meledin A.; Vallès F.; De Roo J.; Rijckaert H.; Pollefeyt G.; Bruneel E.; Palau A.; Coll M.; et al. Superconducting YBa2Cu3O7-δ nanocomposites using preformed ZrO2 nanocrystals: growth mechanisms and vortex pinning properties. Adv. Electron. Mater. 2016, 2 (10), 1600161.10.1002/aelm.201600161. - DOI
    1. Wang J.; Choudhary S.; De Roo J.; De Keukeleere K.; Van Driessche I.; Crosby A. J.; Nonnenmann S. S. How ligands affect resistive switching in solution-processed HfO2 nanoparticle assemblies. ACS Appl. Mater. Interfaces 2018, 10 (5), 4824–4830. 10.1021/acsami.7b17376. - DOI - PubMed

LinkOut - more resources