Essential oil-nanoemulsion based edible coating: Innovative sustainable preservation method for fresh/fresh-cut fruits and vegetables
- PMID: 39047488
- DOI: 10.1016/j.foodchem.2024.140545
Essential oil-nanoemulsion based edible coating: Innovative sustainable preservation method for fresh/fresh-cut fruits and vegetables
Abstract
Utilizing plant-based sources for the preservation of fresh and fresh-cut fruits and vegetables offers a natural and chemical-free method. However, the inherent instability of plant bioactive compounds underscores the necessity for encapsulation techniques. Essential oil-based nanoemulsions (EO-NEs) stand out among food additives due to their distinctive antibacterial and antioxidant properties. This review delves into recent advancements in the application of EO-NEs as edible coatings for fresh and fresh-cut produce. It examines the efficacy of EO-NEs in enhancing the preservation of fruits and vegetables by harnessing their bioactive compounds for antibacterial, antifungal, and antioxidant activities. Additionally, the review accentuates the efficacy of EO-NEs in inhibiting biofilm formation on fruits and vegetables. It reveals that coatings derived from plant-source nanoemulsions exhibit exceptional mechanical, optical, and microstructural qualities, as well as superior water barrier properties. In contrast to conventional emulsions, nanocoatings facilitate the gradual and controlled release of antimicrobial and antioxidant compounds during food storage. This feature enhances bioactivity, extends shelf life, and enhances the nutritional profile of products. By preserving and protecting shelf stability, EO-NEs contribute to the maintenance of vegetable freshness. Nonetheless, ensuring their commercial viability necessitates additional research into the toxicity of EO-based nanoemulsions.
Keywords: Antimicrobial activity; Edible coatings; Essential oils; Fruit and vegetables; Nanoemulsions.
Copyright © 2024. Published by Elsevier Ltd.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare no conflicts of interest.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
