Traffic-related ultrafine particles impair mitochondrial functions in human olfactory mucosa cells - Implications for Alzheimer's disease
- PMID: 39047637
- PMCID: PMC11321383
- DOI: 10.1016/j.redox.2024.103272
Traffic-related ultrafine particles impair mitochondrial functions in human olfactory mucosa cells - Implications for Alzheimer's disease
Abstract
Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 μm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.
Keywords: Mitochondrial dysfunction; Olfactory mucosa (OM); Oxidative phosphorylation (OXPHOS); RNA sequencing (RNA-Seq); Redox balance; Ultrafine particles (UFP).
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures
References
-
- Hullmann M., Albrecht C., van Berlo D., Gerlofs-Nijland M.E., Wahle T., Boots A.W., Krutmann J., Cassee F.R., Bayer T.A., Schins R.P.F. Diesel engine exhaust accelerates plaque formation in a mouse model of Alzheimer's disease. Part. Fibre Toxicol. 2017;14:35. doi: 10.1186/s12989-017-0213-5. - DOI - PMC - PubMed
-
- Iaccarino L., La Joie R., Lesman-Segev O.H., Lee E., Hanna L., Allen I.E., Hillner B.E., Siegel B.A., Whitmer R.A., Carrillo M.C., Gatsonis C., Rabinovici G.D. Association between ambient air pollution and amyloid positron emission tomography positivity in older adults with cognitive impairment. JAMA Neurol. 2021;78:197–207. doi: 10.1001/jamaneurol.2020.3962. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
