Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 7;15(29):11402-11407.
doi: 10.1039/d4sc01909a. eCollection 2024 Jul 24.

The unprecedented strong paratropic ring current of a bis-PdII complex of 5,10,23-trimesityl [28]heptaphyrin(1.1.0.0.1.0.0)

Affiliations

The unprecedented strong paratropic ring current of a bis-PdII complex of 5,10,23-trimesityl [28]heptaphyrin(1.1.0.0.1.0.0)

Yang Liu et al. Chem Sci. .

Abstract

Acid-catalyzed Friedel-Crafts-type cyclization of tetrapyrrolic BF2 complex 1 and α,α'-dibromotripyrrin 2 gave 5,10,23-trimesityl [28]heptaphyrin(1.1.0.0.1.0.0) BF2 complex 3BF2 as a stable and moderate antiaromatic macrocycle. Demetalation of 3BF2 with methanesulfonic acid followed by treatment with HCl gave free-base salt 3HCl that holds a chloride anion at the core. This salt displays a planar structure with an inverted pyrrole and a stronger paratropic ring current. Metalation of neutral free-base 3 with PdCl2 gave bis-PdII complex 3Pd2 as a stable antiaromatic molecule. The 1H NMR spectrum of 3Pd2 displays signals due to pyrrolic β-protons in the range of -1.06 ∼ -1.90 ppm, indicating the unprecedented strong paratropic ring current.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Examples and NICS(0) values of stable antiaromatic expanded porphyrins, A, B, C and D; the shown NICS(0) values are determined at the geometric or areal center.
Fig. 1
Fig. 1. Single-crystal X-ray structures of the (a) top view and (b) side view of 3BF2A, and (c) top view and (d) side view of 3BF2B. The thermal ellipsoids are at 50% probability.
Scheme 2
Scheme 2. Synthesis of 3BF2 and 3HCl.
Fig. 2
Fig. 2. Single-crystal X-ray structures of the (a) top view and (b) side view of 3HCl. The thermal ellipsoids are at 50% probability.
Scheme 3
Scheme 3. Synthesis of 3 (major isomer 3a and minor isomer 3b) and 3Pd2.
Fig. 3
Fig. 3. Single-crystal X-ray structures of the (a) top view and (b) side view of 3Pd2. The thermal ellipsoids are at 50% probability.
Fig. 4
Fig. 4. Absorption spectra of 3BF2 (black solid line), 3HCl (red solid line), 3 (blue solid line) and 3Pd2 (brown solid line) in CH2Cl2. For clarity, the absorbances at long wavelength are amplified by 10 times.
Fig. 5
Fig. 5. ICSS of 3BF2, (a) top view and (b) side view; 3HCl, (c) top view and (d) side view; 3Pd2, (e) top view and (f) side view. The green isosurfaces represent the region of magnetic shielding values larger than 5.0 ppm. The blue isosurfaces represent the region of magnetic deshielding values smaller than −5 ppm. (g) ICSSZZ(1) plot of 3Pd2.
Scheme 4
Scheme 4. Synthesis of 3Pd2-Ox.

References

    1. Breslow R. Acc. Chem. Res. 1973;6:393. doi: 10.1021/ar50072a001. - DOI
    2. Hopf H. Angew. Chem., Int. Ed. 2013;52:12224. doi: 10.1002/anie.201307162. - DOI - PubMed
    3. Nobuse S. Miyoshi H. Shimizu A. Hisaki I. Fukda K. Nakano M. Tobe Y. Angew. Chem., Int. Ed. 2015;54:2090. doi: 10.1002/anie.201410791. - DOI - PubMed
    1. Nozawa R. Tanaka H. Cha W.-Y. Hong Y. Hisaki I. Shimizu S. Shin J.-Y. Kowalczyk T. Irle S. Kim D. Shinokubo H. Nat. Commun. 2016;7:13620. doi: 10.1038/ncomms13620. - DOI - PMC - PubMed
    2. Nozawa R. Kim J. Oh J. Lamping A. Wang Y. Shimizu S. Hisaki I. Kowalczyk T. Fliegl H. Kim D. Shinokubo H. Nat. Commun. 2019;10:3576. doi: 10.1038/s41467-019-11467-4. - DOI - PMC - PubMed
    1. Shin J.-Y. Kim K. S. Yoon M.-C. Kim J. M. Yoon Z. S. Osuka A. Kim D. Chem. Soc. Rev. 2010;39:2733. doi: 10.1039/B925417J. - DOI - PubMed
    1. Liu J. Ma J. Zhang K. Ravat P. Machata P. Avdoshenko S. Hennersdorf F. Komber H. Pisula W. Weigand J. J. Popov A. A. Beerger R. Müllen K. Feng X. J. Am. Chem. Soc. 2017;139:7513. doi: 10.1021/jacs.7b01619. - DOI - PubMed
    1. Sessler J. L. Seidel D. Angew. Chem., Int. Ed. 2003;42:5134. doi: 10.1002/anie.200200561. - DOI - PubMed
    2. Saito S. Osuka A. Angew. Chem., Int. Ed. 2011;50:4342. doi: 10.1002/anie.201003909. - DOI - PubMed
    3. Stepien M. Sprutta N. Latos-Grażyński L. Angew. Chem., Int. Ed. 2011;50:4288. doi: 10.1002/anie.201003353. - DOI - PubMed
    4. Tanaka T. Osuka A. Chem. Rev. 2017;117:2584. doi: 10.1021/acs.chemrev.6b00371. - DOI - PubMed
    5. Szyszko B. Bialek M. J. Pacholska-Dudziak E. Latos-Grażyński L. Chem. Rev. 2017;117:2839. doi: 10.1021/acs.chemrev.6b00423. - DOI - PubMed
    6. Stępień M. Gońka E. Żyła M. Sprutta N. Chem. Rev. 2017;117:3479. doi: 10.1021/acs.chemrev.6b00076. - DOI - PubMed
    7. Borissov A. Kumar Maurya Y. Moshniaha L. Wong W.-S. Żyła-Karwowska M. Stępień M. Chem. Rev. 2022;122:565. doi: 10.1021/acs.chemrev.1c00449. - DOI - PMC - PubMed

LinkOut - more resources