The Identification of Oral Cariogenic Bacteria through Colorimetric Sensor Array Based on Single-Atom Nanozymes
- PMID: 39058210
- DOI: 10.1002/smll.202403878
The Identification of Oral Cariogenic Bacteria through Colorimetric Sensor Array Based on Single-Atom Nanozymes
Abstract
Effective identification of multiple cariogenic bacteria in saliva samples is important for oral disease prevention and treatment. Here, a simple colorimetric sensor array is developed for the identification of cariogenic bacteria using single-atom nanozymes (SANs) assisted by machine learning. Interestingly, cariogenic bacteria can increase oxidase-like activity of iron (Fe)─nitrogen (N)─carbon (C) SANs by accelerating electron transfer, and inversely reduce the activity of Fe─N─C further reconstruction with urea. Through machine-learning-assisted sensor array, colorimetric responses are developed as "fingerprints" of cariogenic bacteria. Multiple cariogenic bacteria can be well distinguished by linear discriminant analysis and bacteria at different genera can also be distinguished by hierarchical cluster analysis. Furthermore, colorimetric sensor array has demonstrated excellent performance for the identification of mixed cariogenic bacteria in artificial saliva samples. In view of convenience, precise, and high-throughput discrimination, the developed colorimetric sensor array based on SANs assisted by machine learning, has great potential for the identification of oral cariogenic bacteria so as to serve for oral disease prevention and treatment.
Keywords: cariogenic bacteria; colorimetric sensor array; machine learning; single‐atom nanozymes.
© 2024 Wiley‐VCH GmbH.
Similar articles
-
Identification of cariogenic bacteria by click chemistry mediated polyethylene glycolized graphyne nanozymes.Mikrochim Acta. 2025 Jul 28;192(8):530. doi: 10.1007/s00604-025-07361-0. Mikrochim Acta. 2025. PMID: 40719885
-
Fe-N-C single-atom nanozymes based sensor array for dual signal selective determination of antioxidants.Biosens Bioelectron. 2022 Jun 1;205:114097. doi: 10.1016/j.bios.2022.114097. Epub 2022 Feb 21. Biosens Bioelectron. 2022. PMID: 35219019
-
Machine Learning-Assistant Colorimetric Sensor Arrays for Intelligent and Rapid Diagnosis of Urinary Tract Infection.ACS Sens. 2024 Apr 26;9(4):1945-1956. doi: 10.1021/acssensors.3c02687. Epub 2024 Mar 26. ACS Sens. 2024. PMID: 38530950
-
A review on machine learning-powered fluorescent and colorimetric sensor arrays for bacteria identification.Mikrochim Acta. 2023 Oct 25;190(11):451. doi: 10.1007/s00604-023-06021-5. Mikrochim Acta. 2023. PMID: 37880465 Review.
-
Clinical Effects of Sugar Substitutes on Cariogenic Bacteria: A Systematic Review and Meta-Analysis.Int Dent J. 2024 Oct;74(5):987-998. doi: 10.1016/j.identj.2024.02.008. Epub 2024 Apr 10. Int Dent J. 2024. PMID: 38599933 Free PMC article.
Cited by
-
Machine-Learning-Assisted Nanozyme-Based Sensor Arrays: Construction, Empowerment, and Applications.Biosensors (Basel). 2025 May 29;15(6):344. doi: 10.3390/bios15060344. Biosensors (Basel). 2025. PMID: 40558426 Free PMC article. Review.
-
Advances in machine learning-enhanced nanozymes.Front Chem. 2024 Oct 17;12:1483986. doi: 10.3389/fchem.2024.1483986. eCollection 2024. Front Chem. 2024. PMID: 39483853 Free PMC article. Review.
References
-
- R. H. Selwitz, A. I. Ismail, N. B. Pitts, Lancet 2007, 369, 51.
-
- W. Loesche, Infect. Dis. Clin. North Am. 2007, 21, 471.
-
- H. Koo, M. L. Falsetta, M. I. Klein, J. Dent. Res. 2013, 92, 1065.
-
- Z. R. Li, J. Sun, Y. Du, A. Pan, L. Zeng, R. Maboudian, R. A. Burne, P. Y. Qian, W. Zhang, Nat. Chem. Biol. 2021, 17, 576.
-
- C. Bin, N. A. Al‐Dhabi, G. A. Esmail, S. Arokiyaraj, M. V. Arasu, Saudi J. Biol. Sci. 2020, 27, 1428.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical