Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov;91(4):665-673.
doi: 10.1177/03915603241261499. Epub 2024 Jul 26.

Tumor morphology evaluation using 3D-morphometric features of renal masses

Affiliations

Tumor morphology evaluation using 3D-morphometric features of renal masses

Fiev Dmitry et al. Urologia. 2024 Nov.

Abstract

Objective: To assess the correlation between the general (gender, age, and maximum tumor size) and 3D morphotopometric features of the renal tumor node, following the MSCT data post-processing, and the tumor histological structure; to propose an equation allowing for kidney malignancy assessment based on general and morphometric features.

Materials and methods: In total, 304 patients with unilateral solitary renal neoplasms underwent laparoscopic (retroperitoneoscopic) or robotic partial or radical nephrectomy. Before the procedure, kidney contrast-enhanced MSCT followed by the tumor 3D-modeling was performed. 3D model of the kidney tumor, and its morphotopometric features, and histological structure were analyzed. The morphotopometric ones include the side of the lesion, location by segments, the surface where the tumor, the depth of the tumor invasion into the kidney, and the shape of tumor.

Results: Out of 304 patients, 254 (83.6%) had malignant kidney tumors and 50 (16.4%) benign kidney tumors. In total, 231 patients, out of 254 (90.9%) were assessed for the degree of malignant tumor differentiation. Malignant tumors were more frequent in men than in women (p < 0.001). Mushroom-shaped tumors were the most common shapes among benign renal masses (35.2%). The most common malignant kidney tumors had spherical with a partially uneven surface (27.6%), multinodular (tuberous (27.2%)), and spherical with a conical base (24.8%) shapes. Logistic regression model enabled the development of prognostic equation for tumor malignancy prediction ("low" or "high"). The univariate analysis revealed the correlation only between high differentiation (G1) and a spherical tumor with a conical base (p = 0.029).

Conclusion: The resulting logistic model, based on the analysis of such predictors as gender and form of kidney lesions, demonstrated a large share (87.6%) of correct predictions of the kidney tumor malignancy.

Keywords: 3D-model; Kidney tumor; morphometry; prognostic equation; tumor shape.

PubMed Disclaimer

Conflict of interest statement

Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

LinkOut - more resources