Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct;26(10):917-930.
doi: 10.1016/j.jmoldx.2024.06.008. Epub 2024 Jul 25.

A Network-Based Framework to Discover Treatment-Response-Predicting Biomarkers for Complex Diseases

Affiliations
Free article

A Network-Based Framework to Discover Treatment-Response-Predicting Biomarkers for Complex Diseases

Uday S Shanthamallu et al. J Mol Diagn. 2024 Oct.
Free article

Abstract

The potential of precision medicine to transform complex autoimmune disease treatment is often challenged by limited data availability and inadequate sample size when compared with the number of molecular features found in high-throughput multi-omics data sets. To address this issue, the novel framework PRoBeNet (Predictive Response Biomarkers using Network medicine) was developed. PRoBeNet operates under the hypothesis that the therapeutic effect of a drug propagates through a protein-protein interaction network to reverse disease states. PRoBeNet prioritizes biomarkers by considering i) therapy-targeted proteins, ii) disease-specific molecular signatures, and iii) an underlying network of interactions among cellular components (the human interactome). PRoBeNet helped discover biomarkers predicting patient responses to both an established autoimmune therapy (infliximab) and an investigational compound (a mitogen-activated protein kinase 3/1 inhibitor). The predictive power of PRoBeNet biomarkers was validated with retrospective gene-expression data from patients with ulcerative colitis and rheumatoid arthritis and prospective data from tissues from patients with ulcerative colitis and Crohn disease. Machine-learning models using PRoBeNet biomarkers significantly outperformed models using either all genes or randomly selected genes, especially when data were limited. These results illustrate the value of PRoBeNet in reducing features and for constructing robust machine-learning models when data are limited. PRoBeNet may be used to develop companion and complementary diagnostic assays, which may help stratify suitable patient subgroups in clinical trials and improve patient outcomes.

PubMed Disclaimer

MeSH terms