Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov:297:111711.
doi: 10.1016/j.cbpa.2024.111711. Epub 2024 Jul 25.

Odorant transport in a hagfish

Affiliations
Free article

Odorant transport in a hagfish

Todor G Cross et al. Comp Biochem Physiol A Mol Integr Physiol. 2024 Nov.
Free article

Abstract

Odorant transport is of fundamental and applied importance. Using computational simulations, we studied odorant transport in an anatomically accurate model of the nasal passage of a hagfish (probably Eptatretus stoutii). We found that ambient water is sampled widely, with a significant ventral element. Additionally, there is a bilateral element to olfactory flow, which enters the single nostril in two narrow, laminar streams that are then split prior to the nasal chamber by the anterior edge of the central olfactory lamella. An appendage on this lamella directs a small portion (10-14%) of the overall nasal flow to the olfactory sensory channels. Much of the remaining flow is diverted away from the sensory channels by two peripheral channels. The anterior edge of the central olfactory lamella, together with a jet-impingement mechanism, disperses flow over the olfactory surfaces. Diffusion of odorant from bulk water to the olfactory surfaces is facilitated by the large surface area:volume ratio of the sensory channels, and by a resistance-based hydrodynamic mechanism that leads to long residence times (up to 4.5 s) in the sensory channels. With increasing volumetric flow rate, the rate of odorant transfer to the olfactory surfaces increases, but the efficiency of odorant uptake decreases, falling in the range 2-6%. Odorant flux decreases caudally across the olfactory surfaces, suggesting in vivo a preponderance of olfactory sensory neurons on the anterior part of each olfactory surface. We conclude that the hagfish has a subtle anatomy for locating and capturing odorant molecules.

Keywords: Hagfish; Lamprey; Microfluidic devices; Navigation; Stereo olfaction.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources