Plasma-derived exosome miR-10a-5p promotes premature ovarian failure by target BDNF via the TrkB/Akt/mTOR signaling pathway
- PMID: 39069050
- DOI: 10.1016/j.ijbiomac.2024.134195
Plasma-derived exosome miR-10a-5p promotes premature ovarian failure by target BDNF via the TrkB/Akt/mTOR signaling pathway
Abstract
Premature ovarian failure (POF) is characterized by a significant decline in the ovarian follicle pool and oocyte reserve, alongside an increase in the number of low-quality oocytes and apoptosis of granulosa cells (GCs). Exosome-derived miRNA plays a regulatory role in crucial cellular activities and contributes to the onset and progression of POF. In this study, we successfully established a rabbit model of POF and conducted in vitro and in vivo experiments that confirmed DiI-labeled Pla-Exos (exosomes derived from plasma) could enter the follicle through blood circulation, with GCs capable of uptaking these exosomes. Our RNA-seq analysis revealed elevated expression of miR-10a-5p in Pla-Exos from POF rabbits. Moreover, our findings demonstrate that exosomal miR-10a-5p suppresses GCs proliferation and induces apoptosis via the mitochondrial pathway. Additionally, exosomal miR-10a-5p inhibits the TrkB/Akt/mTOR signaling pathway by downregulating BDNF expression, thereby modulating the expression levels of proteins and genes associated with the cell cycle, follicle development, and GCs senescence. In conclusion, our study highlights the role of Pla-Exos miR-10a-5p in promoting rabbit POF through the TrkB/Akt/mTOR signaling pathway by targeting BDNF. These findings provide new insights into potential therapeutic targets for POF, offering valuable references for addressing concerns related to female reproductive function.
Keywords: BDNF; Exosomes; Premature ovarian failure; TrkB/Akt/mTOR signaling pathway; miR-10a-5p.
Copyright © 2024 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous