Endothelial Dysfunction in Youth-Onset Type 2 Diabetes: A Clinical Translational Study
- PMID: 39069898
- PMCID: PMC11361354
- DOI: 10.1161/CIRCRESAHA.124.324272
Endothelial Dysfunction in Youth-Onset Type 2 Diabetes: A Clinical Translational Study
Abstract
Background: Youth-onset type 2 diabetes (Y-T2D) is associated with increased risk for coronary atherosclerotic disease, but the timing of the earliest pathological features and evidence of cardiac endothelial dysfunction have not been evaluated in this population. Endothelial function magnetic resonance imaging may detect early and direct endothelial dysfunction in the absence of classical risk factors (severe hyperglycemia, hypertension, and hyperlipidemia). Using endothelial function magnetic resonance imaging, we evaluated peripheral and coronary artery structure and endothelial function in young adults with Y-T2D diagnosed ≤5 years compared with age-matched healthy peers. We isolated and characterized plasma-derived small extracellular vesicles and evaluated their effects on inflammatory and signaling biomarkers in healthy human coronary artery endothelial cells to validate the imaging findings.
Methods: Right coronary wall thickness, coronary artery flow-mediated dilation, and brachial artery flow-mediated dilation were measured at baseline and during isometric handgrip exercise using a 3.0T magnetic resonance imaging. Human coronary artery endothelial cells were treated with Y-T2D plasma-derived small extracellular vesicles. Protein expression was measured by Western blot analysis, oxidative stress was measured using the redox-sensitive probe dihydroethidium, and nitric oxide levels were measured by 4-amino-5-methylamino-2',7'-difluororescein diacetate.
Results: Y-T2D (n=20) had higher hemoglobin A1c and high-sensitivity C-reactive protein, but similar total and LDL (low-density lipoprotein)-cholesterol compared with healthy peers (n=16). Y-T2D had greater coronary wall thickness (1.33±0.13 versus 1.22±0.13 mm; P=0.04) and impaired endothelial function: lower coronary artery flow-mediated dilation (-3.1±15.5 versus 15.9±17.3%; P<0.01) and brachial artery flow-mediated dilation (6.7±14.7 versus 26.4±15.2%; P=0.001). Y-T2D plasma-derived small extracellular vesicles reduced phosphorylated endothelial nitric oxide synthase expression and nitric oxide levels, increased reactive oxygen species production, and elevated ICAM (intercellular adhesion molecule)-mediated inflammatory pathways in human coronary artery endothelial cells.
Conclusions: Coronary and brachial endothelial dysfunction was evident in Y-T2D who were within 5 years of diagnosis and did not have severe hyperglycemia or dyslipidemia. Plasma-derived small extracellular vesicles induced markers of endothelial dysfunction, which corroborated accelerated subclinical coronary atherosclerosis as an early feature in Y-T2D.
Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02830308 and NCT01399385.
Keywords: atherosclerosis; brachial artery; cardiovascular diseases; diabetes, type 2; pediatric obesity.
Conflict of interest statement
None.
Figures
References
-
- Constantino MI, Molyneaux L, Limacher-Gisler F, Al-Saeed A, Luo C, Wu T, Twigg SM, Yue DK, Wong J. Long-term complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care. 2013;36:3863–3869. doi: 10.2337/dc12-2455 - PMC - PubMed
-
- Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119 - PMC - PubMed
-
- Tonnies T, Brinks R, Isom S, Dabelea D, Divers J, Mayer-Davis EJ, Lawrence JM, Pihoker C, Dolan L, Liese AD, et al. Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2060: the SEARCH for diabetes in youth study. Diabetes Care. 2023;46:313. doi: 10.2337/dc22-0945 - PMC - PubMed
Publication types
MeSH terms
Substances
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
