A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot
- PMID: 39070906
- PMCID: PMC11269457
- DOI: 10.1186/s43593-024-00072-8
A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot
Abstract
A quantum-light source that delivers photons with a high brightness and a high degree of entanglement is fundamental for the development of efficient entanglement-based quantum-key distribution systems. Among all possible candidates, epitaxial quantum dots are currently emerging as one of the brightest sources of highly entangled photons. However, the optimization of both brightness and entanglement currently requires different technologies that are difficult to combine in a scalable manner. In this work, we overcome this challenge by developing a novel device consisting of a quantum dot embedded in a circular Bragg resonator, in turn, integrated onto a micromachined piezoelectric actuator. The resonator engineers the light-matter interaction to empower extraction efficiencies up to 0.69(4). Simultaneously, the actuator manipulates strain fields that tune the quantum dot for the generation of entangled photons with corrected fidelities to a maximally entangled state up to 0.96(1). This hybrid technology has the potential to overcome the limitations of the key rates that plague QD-based entangled sources for entanglement-based quantum key distribution and entanglement-based quantum networks.
Supplementary information: The online version contains supplementary material available at 10.1186/s43593-024-00072-8.
© The Author(s) 2024.
Conflict of interest statement
Competing interestsThe authors declare no competing financial or non-financial interests.
Figures



References
-
- D. Awschalom et al., Development of Quantum Interconnects (QuICs) for next-generation information technologies. PRX Quantum 2, 017002 (2021)10.1103/PRXQuantum.2.017002 - DOI
-
- D.A. Vajner, L. Rickert, T. Gao, K. Kaymazlar, T. Heindel, Quantum communication using semiconductor quantum dots. Adv. Quantum Technol. 5, 2100116 (2022)10.1002/qute.202100116 - DOI
-
- E. Pelucchi et al., The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021)10.1038/s42254-021-00398-z - DOI
LinkOut - more resources
Full Text Sources