Versatile Fidelity Estimation with Confidence
- PMID: 39073974
- DOI: 10.1103/PhysRevLett.133.020402
Versatile Fidelity Estimation with Confidence
Abstract
As quantum devices become more complex and the requirements on these devices become more demanding, it is crucial to be able to verify the performance of such devices in a scalable and reliable fashion. A cornerstone task in this challenge is quantifying how close an experimentally prepared quantum state is to the desired one. Here we present a method to construct an estimator for the quantum state fidelity that is compatible with any measurement protocol. Our method provides a confidence interval on this estimator that is guaranteed to be nearly minimax optimal for the specified measurement protocol. For a well-chosen measurement scheme, our method is competitive in the number of measurement outcomes required for estimation. We demonstrate our method using simulations and experimental data from a trapped-ion quantum computer and compare the results to state-of-the-art techniques. Our method can be easily extended to estimate the expectation value of any observable, such as entanglement witnesses.
LinkOut - more resources
Full Text Sources
Research Materials