Substrate specificity and protonation state of ornithine transcarbamoylase as determined by pH studies
- PMID: 3907689
- DOI: 10.1021/bi00339a007
Substrate specificity and protonation state of ornithine transcarbamoylase as determined by pH studies
Abstract
The ornithine transcarbamoylase catalyzed reaction and its inhibition by L-norvaline have been investigated between pH 5.5 and 10.5. The steady-state turnover rate (kcat) of the enzyme from Escherichia coli increases with pH and plateaus above pH 9. Its change with pH conforms to a single protonation process with an apparent pKa of 7.3. The effect of pH on the apparent Michaelis constant (KMapp) of L-ornithine suggests that this diamino acid in its cationic form is not the substrate. Treating only the zwitterions of ornithine as substrate, the pH profile of the pseudo-first-order rate constant (kcat/KMz) of the reaction is a bell-shaped curve characterized by pKa's of 6.2 and 9.1 and asymptotic slopes of +/- 1. Similar pKa's (6.3 and 9.3) are obtained for the pKi profile of zwitterionic L-norvaline, a competitive inhibitor. The pKi profile further indicates that the alpha-amino group of the inhibitor must be charged for binding. Together, these pH profiles provide sufficient information to suggest that only the minor zwitterionic species of ornithine, H2N(CH2)3CH(NH3+)COO-, binds the enzyme productively. The selection of this substrate form by the enzyme leads to a Michaelis complex in which ornithine is poised for nucleophilic attack. Following such binding, the need for deprotonation of the delta-NH3+ group is avoided, and transcarbamoylation becomes energetically more feasible. Reaction schemes accounting for the effects of pH are proposed for the enzymic reaction.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Molecular Biology Databases