Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2024 Jul 31;7(7):CD003598.
doi: 10.1002/14651858.CD003598.pub3.

Antihypertensive treatment for kidney transplant recipients

Affiliations
Meta-Analysis

Antihypertensive treatment for kidney transplant recipients

Patrizia Natale et al. Cochrane Database Syst Rev. .

Abstract

Background: The comparative effects of specific blood pressure (BP) lowering treatments on patient-important outcomes following kidney transplantation are uncertain. Our 2009 Cochrane review found that calcium channel blockers (CCBs) improved graft function and prevented graft loss, while the evidence for other BP-lowering treatments was limited. This is an update of the 2009 Cochrane review.

Objectives: To compare the benefits and harms of different classes and combinations of antihypertensive drugs in kidney transplant recipients.

Search methods: We contacted the Information Specialist and searched the Cochrane Kidney and Transplant Register of Studies up to 3 July 2024 using search terms relevant to this review. Studies in the Register were identified through searches of CENTRAL, MEDLINE, EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov.

Selection criteria: Randomised controlled trials (RCTs) and quasi-RCTs evaluating any BP-lowering agent in recipients of a functioning kidney transplant for at least two weeks were eligible.

Data collection and analysis: Two authors independently assessed the risks of bias and extracted data. Treatment estimates were summarised using the random-effects model and expressed as relative risk (RR) or mean difference (MD) with 95% confidence intervals (CI). Evidence certainty was assessed using Grades of Recommendation, Assessment, Development and Evaluation (GRADE) processes. The primary outcomes included all-cause death, graft loss, and kidney function.

Main results: Ninety-seven studies (8706 participants) were included. One study evaluated treatment in children. The overall risk of bias was unclear to high across all domains. Compared to placebo or standard care alone, CCBs probably reduce all-cause death (23 studies, 3327 participants: RR 0.83, 95% CI 0.72 to 0.95; I2 = 0%; moderate certainty evidence) and graft loss (24 studies, 3577 participants: RR 0.84, 95% CI 0.75 to 0.95; I2 = 0%; moderate certainty evidence). CCBs may make little or no difference to estimated glomerular filtration rate (eGFR) (11 studies, 2250 participants: MD 1.89 mL/min/1.73 m2, 95% CI -0.70 to 4.48; I2 = 48%; low certainty evidence) and acute rejection (13 studies, 906 participants: RR 10.8, 95% CI 0.85 to 1.35; I2 = 0%; moderate certainty evidence). CCBs may reduce systolic BP (SBP) (3 studies, 329 participants: MD -5.83 mm Hg, 95% CI -10.24 to -1.42; I2 = 13%; low certainty evidence) and diastolic BP (DBP) (3 studies, 329 participants: MD -3.98 mm Hg, 95% CI -5.98 to -1.99; I2 = 0%; low certainty evidence). CCBs have uncertain effects on proteinuria. Compared to placebo or standard care alone, angiotensin-converting-enzyme inhibitors (ACEi) may make little or no difference to all-cause death (7 studies, 702 participants: RR 1.13, 95% CI 0.58 to 2.21; I2 = 0%; low certainty evidence), graft loss (6 studies, 718 participants: RR 0.75, 95% CI 0.49 to 1.13; I2 = 0%; low certainty evidence), eGFR (4 studies, 509 participants: MD -2.46 mL/min/1.73 m2, 95% CI -7.66 to 2.73; I2 = 64%; low certainty evidence) and acute rejection (4 studies, 388 participants: RR 1.75, 95% CI 0.76 to 4.04; I2 = 0%; low certainty evidence). ACEi may reduce proteinuria (5 studies, 441 participants: MD -0.33 g/24 hours, 95% CI -0.64 to -0.01; I2 = 67%; low certainty evidence) but had uncertain effects on SBP and DBP. Compared to placebo or standard care alone, angiotensin receptor blockers (ARB) may make little or no difference to all-cause death (6 studies, 1041 participants: RR 0.69, 95% CI 0.36 to 1.31; I2 = 0%; low certainty evidence), eGRF (5 studies, 300 participants: MD -1.91 mL/min/1.73 m2, 95% CI -6.20 to 2.38; I2 = 57%; low certainty evidence), and acute rejection (4 studies, 323 participants: RR 1.00, 95% CI 0.44 to 2.29; I2 = 0%; low certainty evidence). ARBs may reduce graft loss (6 studies, 892 participants: RR 0.35, 95% CI 0.15 to 0.84; I2 = 0%; low certainty evidence), SBP (10 studies, 1239 participants: MD -3.73 mm Hg, 95% CI -7.02 to -0.44; I2 = 63%; moderate certainty evidence) and DBP (9 studies, 1086 participants: MD -2.75 mm Hg, 95% CI -4.32 to -1.18; I2 = 47%; moderate certainty evidence), but has uncertain effects on proteinuria. The effects of CCBs, ACEi or ARB compared to placebo or standard care alone on cardiovascular outcomes (including fatal or nonfatal myocardial infarction, fatal or nonfatal stroke) or other adverse events were uncertain. The comparative effects of ACEi plus ARB dual therapy, alpha-blockers, and mineralocorticoid receptor antagonists compared to placebo or standard care alone were rarely evaluated. Head-to-head comparisons of ACEi, ARB or thiazide versus CCB, ACEi versus ARB, CCB or ACEi versus alpha- or beta-blockers, or ACEi plus CCB dual therapy versus ACEi or CCB monotherapy were scarce. No studies reported outcome data for cancer or life participation.

Authors' conclusions: For kidney transplant recipients, the use of CCB therapy to reduce BP probably reduces death and graft loss compared to placebo or standard care alone, while ARB may reduce graft loss. The effects of ACEi and ARB compared to placebo or standard care on other patient-centred outcomes were uncertain. The effects of dual therapy, alpha-blockers, and mineralocorticoid receptor antagonists compared to placebo or standard care alone and the comparative effects of different treatments were uncertain.

Trial registration: ClinicalTrials.gov NCT00067990 NCT00933231 NCT00270153 NCT00502242 NCT02644395 NCT01602861 NCT02446548 NCT00047983 NCT02490904 NCT00155246 ISRCTN01577227 NCT00308425 NCT01007994 NCT01224860 NCT02030314 NCT01157234 NCT00140907 NCT04450953.

PubMed Disclaimer

Conflict of interest statement

  1. Patrizia Natale has declared they have no conflict of interest

  2. Pamela K Mooi has declared they have no conflict of interest

  3. Suetonia C Palmer has declared they have no conflict of interest

  4. Nicholas B Cross has declared they have no conflict of interest

  5. Tess E Cooper has declared they have no conflict of interest

  6. Angela C Webster has declared they have no conflict of interest

  7. Philip Masson has declared they have no conflict of interest

  8. Jonathan C Craig has declared they have no conflict of interest

  9. Giovanni Strippoli has declared they have no conflict of interest

Figures

1
1
Study flow diagram for 2024 update
2
2
Methodological quality graph: review authors' judgements about each methodological quality item presented as percentages across all included studies.
3
3
Methodological quality summary: review authors' judgements about each methodological quality item for each included study.
4
4
Funnel plot of comparison: 1 CCB versus placebo/no treatment, outcome: 1.1 Death (all cause).
5
5
Funnel plot of comparison: 1 CCB versus placebo/no treatment, outcome: 1.3 Graft loss.
6
6
Funnel plot of comparison: 1 CCB versus placebo/no treatment, outcome: 1.4 Creatinine clearance (mL/min).
1.1
1.1. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 1: All‐cause death
1.2
1.2. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 2: Graft loss
1.3
1.3. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 3: Creatinine clearance [mL/min]
1.4
1.4. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 4: eGFR [mL/min/1.73 m²]
1.5
1.5. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 5: Serum creatinine [µmol/L]
1.6
1.6. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 6: Cardiovascular death
1.7
1.7. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 7: Systolic blood pressure [mm Hg]
1.8
1.8. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 8: Diastolic blood pressure [mm Hg]
1.9
1.9. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 9: Mean arterial pressure [mm Hg]
1.10
1.10. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 10: Any rejection
1.11
1.11. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 11: Acute rejection
1.12
1.12. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 12: Rejection
1.13
1.13. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 13: Rejection rate
1.14
1.14. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 14: Proteinuria [g/24 hours]
1.15
1.15. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 15: Nonfatal myocardial infarction
1.16
1.16. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 16: Fatal myocardial infarction
1.17
1.17. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 17: Thrombosis of the graft arteria
1.18
1.18. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 18: Any adverse event
1.19
1.19. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 19: Hypotension
1.20
1.20. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 20: New onset hypertension
1.21
1.21. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 21: New onset diabetes
1.22
1.22. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 22: Hyperglycaemia
1.23
1.23. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 23: Oedema of legs
1.24
1.24. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 24: Withdrawal due to adverse events
1.25
1.25. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 25: Withdrawal due to rejection
1.26
1.26. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 26: Withdrawal due to congestive heart failure
1.27
1.27. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 27: Withdrawal due to heart block
1.28
1.28. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 28: Withdrawal due to hypotension
1.29
1.29. Analysis
Comparison 1: Calcium channel blockers (CCB) versus placebo or standard care alone (control), Outcome 29: Withdrawal due to fatigue
2.1
2.1. Analysis
Comparison 2: Calcium channel blockers (CCB) versus non‐antihypertensive treatment (non‐AHT), Outcome 1: Graft loss
2.2
2.2. Analysis
Comparison 2: Calcium channel blockers (CCB) versus non‐antihypertensive treatment (non‐AHT), Outcome 2: Serum creatinine [µmol/L]
2.3
2.3. Analysis
Comparison 2: Calcium channel blockers (CCB) versus non‐antihypertensive treatment (non‐AHT), Outcome 3: Acute rejection
3.1
3.1. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 1: All‐cause death
3.2
3.2. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 2: Graft loss
3.3
3.3. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 3: Creatinine clearance [mL/min]
3.4
3.4. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 4: eGFR [mL/min/1.73 m²]
3.5
3.5. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 5: Serum creatinine [µmol/L]
3.6
3.6. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 6: Doubling of serum creatinine
3.7
3.7. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 7: Acute kidney injury
3.8
3.8. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 8: Cardiovascular death
3.9
3.9. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 9: Systolic blood pressure [mm Hg]
3.10
3.10. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 10: Diastolic blood pressure [mm Hg]
3.11
3.11. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 11: Mean arterial pressure [mm Hg]
3.12
3.12. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 12: Controlled blood pressure
3.13
3.13. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 13: Any rejection
3.14
3.14. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 14: Acute rejection
3.15
3.15. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 15: Proteinuria at end of treatment
3.16
3.16. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 16: Proteinuria [g/24 hours]
3.17
3.17. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 17: Urinary albumin/creatinine ratio [mg/mg]
3.18
3.18. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 18: Nonfatal myocardial infarction
3.19
3.19. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 19: Myocardial infarction
3.20
3.20. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 20: Fatal stroke
3.21
3.21. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 21: Cardiovascular events
3.22
3.22. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 22: Heart failure
3.23
3.23. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 23: Angina pectoris
3.24
3.24. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 24: Thromboembolic episodes
3.25
3.25. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 25: Haemoglobin [g/dL]
3.26
3.26. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 26: Haematocrit [%]
3.27
3.27. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 27: Serum potassium [mmol/L]
3.28
3.28. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 28: Hyperkalaemia
3.29
3.29. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 29: Any adverse event
3.30
3.30. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 30: Cough
3.31
3.31. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 31: Peripheral oedema
3.32
3.32. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 32: Infection
3.33
3.33. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 33: Withdrawal due to adverse events
3.34
3.34. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 34: Withdrawal due to acute kidney injury
3.35
3.35. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 35: Withdrawal due to hyperkalaemia
3.36
3.36. Analysis
Comparison 3: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus placebo or standard care alone (control), Outcome 36: Withdrawal due to cough
4.1
4.1. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 1: All‐cause death
4.2
4.2. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 2: Sudden death
4.3
4.3. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 3: Graft loss
4.4
4.4. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 4: Creatinine clearance [mL/min]
4.5
4.5. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 5: eGFR [mL/min/1.73 m²]
4.6
4.6. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 6: Serum creatinine [µmol/L]
4.7
4.7. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 7: Doubling of serum creatinine
4.8
4.8. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 8: Acute kidney injury
4.9
4.9. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 9: Cardiovascular death
4.10
4.10. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 10: Systolic blood pressure [mm Hg]
4.11
4.11. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 11: Diastolic blood pressure [mm Hg]
4.12
4.12. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 12: Mean arterial pressure [mm Hg]
4.13
4.13. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 13: Any rejection
4.14
4.14. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 14: Acute rejection
4.15
4.15. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 15: Nonfatal myocardial infarction
4.16
4.16. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 16: Nonfatal stroke
4.17
4.17. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 17: Cardiovascular events
4.18
4.18. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 18: Urinary albumin/creatinine ratio [mg/g]
4.19
4.19. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 19: Haemoglobin [g/dL]
4.20
4.20. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 20: Haematocrit [%]
4.21
4.21. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 21: Serum potassium [mmol/L]
4.22
4.22. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 22: Hyperkalaemia
4.23
4.23. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 23: Any adverse event
4.24
4.24. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 24: Hypotension
4.25
4.25. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 25: Withdrawal due to adverse events
4.26
4.26. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 26: Withdrawal due to acute kidney injury
4.27
4.27. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 27: Withdrawal due to acute rejection
4.28
4.28. Analysis
Comparison 4: Angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 28: Withdrawal due to hyperkalaemia
5.1
5.1. Analysis
Comparison 5: Angiotensin‐converting‐enzyme inhibitors (ACEi) + angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 1: All‐cause death
5.2
5.2. Analysis
Comparison 5: Angiotensin‐converting‐enzyme inhibitors (ACEi) + angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 2: Cardiovascular death
5.3
5.3. Analysis
Comparison 5: Angiotensin‐converting‐enzyme inhibitors (ACEi) + angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 3: Withdrawal due to adverse events
6.1
6.1. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 1: All‐cause death
6.2
6.2. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 2: Graft loss
6.3
6.3. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 3: Acute kidney injury
6.4
6.4. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 4: Cardiovascular death
6.5
6.5. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 5: Any rejection
6.6
6.6. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 6: Acute rejection
6.7
6.7. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 7: Hyperkalaemia
6.8
6.8. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 8: Hypotension
6.9
6.9. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 9: Cough
6.10
6.10. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 10: Peripheral oedema
6.11
6.11. Analysis
Comparison 6: Angiotensin‐converting‐enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) versus placebo or standard care alone (control), Outcome 11: Fatigue
7.1
7.1. Analysis
Comparison 7: Alpha‐blockers versus placebo or no treatment (control), Outcome 1: All‐cause death
7.2
7.2. Analysis
Comparison 7: Alpha‐blockers versus placebo or no treatment (control), Outcome 2: Graft loss
7.3
7.3. Analysis
Comparison 7: Alpha‐blockers versus placebo or no treatment (control), Outcome 3: Systolic blood pressure [mm Hg]
7.4
7.4. Analysis
Comparison 7: Alpha‐blockers versus placebo or no treatment (control), Outcome 4: Rejection rate
8.1
8.1. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 1: All‐cause death
8.2
8.2. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 2: Graft loss
8.3
8.3. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 3: eGFR [mL/min/1.73 m²]
8.4
8.4. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 4: Serum creatinine [µmol/L]
8.5
8.5. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 5: Cardiovascular death
8.6
8.6. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 6: Systolic blood pressure [mm Hg]
8.7
8.7. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 7: Diastolic blood pressure [mm Hg]
8.8
8.8. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 8: Mean arterial pressure [mm Hg]
8.9
8.9. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 9: Any rejection
8.10
8.10. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 10: Acute rejection
8.11
8.11. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 11: Urinary albumin/creatinine ratio [mg/g]
8.12
8.12. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 12: Cardiovascular events
8.13
8.13. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 13: Hyperkalaemia
8.14
8.14. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 14: New‐onset hypertension
8.15
8.15. Analysis
Comparison 8: Mineralocorticoid receptor antagonists (MRA) versus placebo or no treatment or non‐antihypertensive agents (control), Outcome 15: Withdrawal due to adverse events
9.1
9.1. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 1: All‐cause death
9.2
9.2. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 2: Graft loss
9.3
9.3. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 3: Clearance creatinine [mL/min]
9.4
9.4. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 4: eGFR [mL/min/1.73 m²]
9.5
9.5. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 5: Serum creatinine [μmol/L]
9.6
9.6. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 6: Cardiovascular death
9.7
9.7. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 7: Systolic blood pressure [mm Hg]
9.8
9.8. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 8: Diastolic blood pressure [mm Hg]
9.9
9.9. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 9: Mean arterial pressure [mm Hg]
9.10
9.10. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 10: Any rejection
9.11
9.11. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 11: Acute rejection
9.12
9.12. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 12: Rejection rate
9.13
9.13. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 13: Proteinuria [g/24 hours]
9.14
9.14. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 14: Myocardial infarction
9.15
9.15. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 15: Fatal myocardial infarction
9.16
9.16. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 16: Cardiovascular events
9.17
9.17. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 17: Haemoglobin [g/dL]
9.18
9.18. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 18: Haematocrit [%]
9.19
9.19. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 19: Serum potassium [mmol/L]
9.20
9.20. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 20: Hyperkalaemia
9.21
9.21. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 21: Cough
9.22
9.22. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 22: Peripheral oedema
9.23
9.23. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 23: Withdrawn due to adverse events
9.24
9.24. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 24: Withdrawn due to graft loss
9.25
9.25. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 25: Withdrawn due to heart failure
9.26
9.26. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 26: Withdrawn due to hypotension
9.27
9.27. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 27: Withdrawn due to kidney transplant artery stenoses
9.28
9.28. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 28: Withdrawn due to hyperkalaemia
9.29
9.29. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 29: Withdrawn due to cough
9.30
9.30. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 30: Withdrawn due to ankle oedema
9.31
9.31. Analysis
Comparison 9: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus calcium channel blockers (CCB), Outcome 31: Withdrawn due to fatigue
10.1
10.1. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 1: All‐cause death
10.2
10.2. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 2: Serum creatinine [µmol/L]
10.3
10.3. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 3: Cardiovascular death
10.4
10.4. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 4: Systolic blood pressure [mm Hg]
10.5
10.5. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 5: Diastolic blood pressure [mm Hg]
10.6
10.6. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 6: Mean arterial pressure [mm Hg]
10.7
10.7. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 7: Controlled blood pressure
10.8
10.8. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 8: Any rejection
10.9
10.9. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 9: Rejection rate
10.10
10.10. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 10: Proteinuria [g/24 hours]
10.11
10.11. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 11: Haemoglobin [g/dL]
10.12
10.12. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 12: Serum potassium (mmol/L)
10.13
10.13. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 13: Hyperkalaemia
10.14
10.14. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 14: Withdrawal due to adverse events
10.15
10.15. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 15: Withdrawal due to rejection
10.16
10.16. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 16: Withdrawal due to hyperkalaemia
10.17
10.17. Analysis
Comparison 10: Angiotensin receptor blockers (ARB) versus calcium channel blockers (CCB), Outcome 17: Withdrawal due to hypotension
11.1
11.1. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 1: Serum creatinine [μmol/L]
11.2
11.2. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 2: Doubling of serum creatinine
11.3
11.3. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 3: Systolic blood pressure [mm Hg]
11.4
11.4. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 4: Mean arterial pressure [mm Hg]
11.5
11.5. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 5: Acute rejection
11.6
11.6. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 6: Rejection rate
11.7
11.7. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 7: Proteinuria [g/24 hours]
11.8
11.8. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 8: Proteinuria remission
11.9
11.9. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 9: Haemoglobin [g/dL]
11.10
11.10. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 10: Haematocrit [%]
11.11
11.11. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 11: Serum potassium [mmol/L]
11.12
11.12. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 12: Hyperkalaemia
11.13
11.13. Analysis
Comparison 11: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus angiotensin receptor blockers (ARB), Outcome 13: Withdrawal due to adverse events
12.1
12.1. Analysis
Comparison 12: Calcium channel blockers (CCB) versus alpha‐blockers, Outcome 1: All‐cause death
12.2
12.2. Analysis
Comparison 12: Calcium channel blockers (CCB) versus alpha‐blockers, Outcome 2: Graft loss
12.3
12.3. Analysis
Comparison 12: Calcium channel blockers (CCB) versus alpha‐blockers, Outcome 3: Cardiovascular death
12.4
12.4. Analysis
Comparison 12: Calcium channel blockers (CCB) versus alpha‐blockers, Outcome 4: Systolic blood pressure [mm Hg]
12.5
12.5. Analysis
Comparison 12: Calcium channel blockers (CCB) versus alpha‐blockers, Outcome 5: Diastolic blood pressure [mm Hg]
12.6
12.6. Analysis
Comparison 12: Calcium channel blockers (CCB) versus alpha‐blockers, Outcome 6: Mean arterial pressure [mm Hg]
12.7
12.7. Analysis
Comparison 12: Calcium channel blockers (CCB) versus alpha‐blockers, Outcome 7: Fatal myocardial infarction
12.8
12.8. Analysis
Comparison 12: Calcium channel blockers (CCB) versus alpha‐blockers, Outcome 8: Cardiovascular events
12.9
12.9. Analysis
Comparison 12: Calcium channel blockers (CCB) versus alpha‐blockers, Outcome 9: Withdrawal due to adverse events
13.1
13.1. Analysis
Comparison 13: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus alpha‐blockers, Outcome 1: All‐cause death
13.2
13.2. Analysis
Comparison 13: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus alpha‐blockers, Outcome 2: Graft loss
13.3
13.3. Analysis
Comparison 13: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus alpha‐blockers, Outcome 3: Cardiovascular death
13.4
13.4. Analysis
Comparison 13: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus alpha‐blockers, Outcome 4: Systolic blood pressure [mm Hg]
13.5
13.5. Analysis
Comparison 13: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus alpha‐blockers, Outcome 5: Diastolic blood pressure [mm Hg]
13.6
13.6. Analysis
Comparison 13: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus alpha‐blockers, Outcome 6: Mean arterial pressure [mm Hg]
13.7
13.7. Analysis
Comparison 13: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus alpha‐blockers, Outcome 7: Fatal myocardial infarction
13.8
13.8. Analysis
Comparison 13: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus alpha‐blockers, Outcome 8: Cardiovascular events
13.9
13.9. Analysis
Comparison 13: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus alpha‐blockers, Outcome 9: Withdrawal due to adverse events
14.1
14.1. Analysis
Comparison 14: Calcium channel blockers (CCB) versus beta‐blockers, Outcome 1: eGFR [mL/min/1.73 m²]
14.2
14.2. Analysis
Comparison 14: Calcium channel blockers (CCB) versus beta‐blockers, Outcome 2: Systolic blood pressure [mm Hg]
14.3
14.3. Analysis
Comparison 14: Calcium channel blockers (CCB) versus beta‐blockers, Outcome 3: Any adverse event
15.1
15.1. Analysis
Comparison 15: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus beta‐blockers, Outcome 1: All‐cause death
15.2
15.2. Analysis
Comparison 15: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus beta‐blockers, Outcome 2: Creatinine clearance [mL/min]
15.3
15.3. Analysis
Comparison 15: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus beta‐blockers, Outcome 3: Serum creatinine [µmol/L]
15.4
15.4. Analysis
Comparison 15: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus beta‐blockers, Outcome 4: Systolic blood pressure [mm Hg]
15.5
15.5. Analysis
Comparison 15: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus beta‐blockers, Outcome 5: Diastolic blood pressure [mm Hg]
15.6
15.6. Analysis
Comparison 15: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus beta‐blockers, Outcome 6: Mean arterial pressure [mm Hg]
15.7
15.7. Analysis
Comparison 15: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus beta‐blockers, Outcome 7: Myocardial infarction
15.8
15.8. Analysis
Comparison 15: Angiotensin‐converting‐enzyme inhibitors (ACEi) versus beta‐blockers, Outcome 8: Haemoglobin [g/dL]
16.1
16.1. Analysis
Comparison 16: Calcium channel blockers (CCB) versus thiazide, Outcome 1: All‐cause death
16.2
16.2. Analysis
Comparison 16: Calcium channel blockers (CCB) versus thiazide, Outcome 2: Cardiovascular death
16.3
16.3. Analysis
Comparison 16: Calcium channel blockers (CCB) versus thiazide, Outcome 3: Any rejection
16.4
16.4. Analysis
Comparison 16: Calcium channel blockers (CCB) versus thiazide, Outcome 4: Acute rejection
16.5
16.5. Analysis
Comparison 16: Calcium channel blockers (CCB) versus thiazide, Outcome 5: Withdrawal due to adverse events
16.6
16.6. Analysis
Comparison 16: Calcium channel blockers (CCB) versus thiazide, Outcome 6: Withdrawal due to peripheral oedema
17.1
17.1. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 1: All‐cause death
17.2
17.2. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 2: Creatinine clearance [mL/min]
17.3
17.3. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 3: Serum creatinine [µmol/L]
17.4
17.4. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 4: Cardiovascular death
17.5
17.5. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 5: Systolic blood pressure [mm Hg]
17.6
17.6. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 6: Diastolic blood pressure [mm Hg]
17.7
17.7. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 7: Mean arterial pressure [mm Hg]
17.8
17.8. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 8: Any rejection
17.9
17.9. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 9: Acute rejection
17.10
17.10. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 10: Haemoglobin [g/L]
17.11
17.11. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 11: Haematocrit [%]
17.12
17.12. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 12: Serum potassium [mmol/L]
17.13
17.13. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 13: Hyperkalaemia
17.14
17.14. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 14: Cough
17.15
17.15. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 15: Peripheral oedema
17.16
17.16. Analysis
Comparison 17: Angiotensin‐converting‐enzyme inhibitors (ACEi) + calcium channel blockers (CCB) versus CCB alone, Outcome 16: Withdrawal due to adverse events
18.1
18.1. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 1: All‐cause death
18.2
18.2. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 2: Clearance creatinine [mL/min]
18.3
18.3. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 3: Serum creatinine [µmol/L]
18.4
18.4. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 4: Cardiovascular death
18.5
18.5. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 5: Systolic blood pressure [mm Hg]
18.6
18.6. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 6: Diastolic blood pressure [mm Hg]
18.7
18.7. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 7: Mean arterial pressure [mm Hg]
18.8
18.8. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 8: Any rejection
18.9
18.9. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 9: Acute rejection
18.10
18.10. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 10: Haemoglobin [g/L]
18.11
18.11. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 11: Haematocrit [%]
18.12
18.12. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 12: Serum potassium [mmol/L]
18.13
18.13. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 13: Hyperkalaemia
18.14
18.14. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 14: Cough
18.15
18.15. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 15: Peripheral oedema
18.16
18.16. Analysis
Comparison 18: Angiotensin‐converting‐enzyme inhibitors (ACEi) plus calcium channel blockers (CCB) versus ACEi alone, Outcome 16: Withdrawal due to adverse events
19.1
19.1. Analysis
Comparison 19: Subgroup analyses: calcium channel blocker (CCB) subtype: CCB versus placebo or standard care alone (control), Outcome 1: Creatinine clearance [mL/min]
19.2
19.2. Analysis
Comparison 19: Subgroup analyses: calcium channel blocker (CCB) subtype: CCB versus placebo or standard care alone (control), Outcome 2: eGFR [mL/min/1.73 m²]
19.3
19.3. Analysis
Comparison 19: Subgroup analyses: calcium channel blocker (CCB) subtype: CCB versus placebo or standard care alone (control), Outcome 3: Serum creatinine [µmol/L]

Update of

References

References to studies included in this review

ABCAN 2010 {published data only}
    1. Hart A, Jackson S, Kasiske BL, Mauer MS, Najafian B, Matas AJ, et al. Uric acid and allograft loss from interstitial fibrosis/tubular atrophy: post hoc analysis from the Angiotensin II Blockade in Chronic Allograft Nephropathy Trial. Transplantation 2014;97(10):1066-71. [MEDLINE: ] - PubMed
    1. Ibrahim HN, Hodges JS, Matas AJ, Mauer M, Kasiske BL. Elevated uric acid is not associated with a faster GFR decline in renal transplant recipients [abstract no: 804]. American Journal of Transplantation 2011;11(Suppl 2):270-1. [EMBASE: 70405844]
    1. Ibrahim HN, Jackson S, Connaire J, Matas A, Ney A, Najafian B, et al. Angiotensin II blockade in kidney transplant recipients. Journal of the American Society of Nephrology 2013;24(2):320-7. [MEDLINE: ] - PMC - PubMed
    1. Ibrahim HN, Kasiske BL, Mauer M. A randomized 5-year trial of angiotensin II blockade vs. placebo in kidney transplant recipients [abstract no: SA-PO1122]. Journal of the American Society of Nephrology 2012;23(Abstract Suppl):11B.
    1. Issa N, Ortiz F, Reule SA, Kukla A, Kasiske BL, Mauer M, et al. The renin-aldosterone axis in kidney transplant recipients and its association with allograft function and structure [Erratum in: Kidney Int. 2015 Jan;87(1):243 Note: Najafian, Behzad [Added]; PMID: 25549130]. Kidney International 2014;85(2):404-15. [MEDLINE: ] - PMC - PubMed
Alcaraz 1991 {published data only}
    1. Alcaraz A, Oppenheimer F, Talbot-Wright R, Fernandez-Cruz L, Manalich M, Garcia-Pages E, et al. Effect of diltiazem in the prevention of acute tubular necrosis, acute rejection, and cyclosporine levels. Transplantation Proceedings 1991;23(5):2383-4. [MEDLINE: ] - PubMed
    1. Oppenheimer F, Alcaraz A, Manalich M, Ricart MJ, Vilardell J, Campistol JM, et al. Influence of the calcium blocker diltiazem on the prevention of acute renal failure after renal transplantation. Transplantation Proceedings 1992;24(1):50-1. [MEDLINE: ] - PubMed
Almeshari 2000 {published data only}
    1. Almeshari K, Alshaibani K, Alfurayh O, Powe J, DeVol E. The antihypertensive and renal protective effects of amlodipine versus cilazapril in renal transplant recipients with hypertension [abstract]. Nephrology Dialysis Transplantation 2000;15(9):A70. [CENTRAL: CN-00460274]
Altiparmak 2001 {published data only}
    1. Altiparmak MR, Trablus S, Apaydin S, Basar O, Sariyar M, Serdengecti K, et al. Is losartan as effective as enalapril on posttransplant persistent proteinuria? Transplantation Proceedings 2001;33(7-8):3368-9. [MEDLINE: ] - PubMed
Amara 2010 {published data only}76140647
    1. Amara AB, Sharma A, Alexander JL, Alfirevic A, Mohiuddin A, Pirmohamed M, et al. Randomized controlled trial: lisinopril reduces proteinuria, ammonia, and renal polypeptide tubular catabolism in patients with chronic allograft nephropathy. Transplantation 2010;89(1):104-14. [MEDLINE: ] - PubMed
    1. Sharma A, Amara A, Alexander J, Shalamanova L, Alfirevic A, Pirmohammed M, et al. Lisinopril and chronic allograft nephropathy (CAN): graft function, proteinuria and proximal renal tubular (PTC) peptide (Trasylol) catabolism: a novel RCT [abstract no: O043]. In: British Transplantation Society (BTS).11th Annual Congress; 2008 Apr 16-18; Glasgow, UK. 2008.
Andres 2006 {published data only}
    1. Andres A, Morales E, Morales JM, Bosch I, Campo C, Ruilope LM. Efficacy and safety of valsartan, an angiotensin II receptor antagonist, in hypertension after renal transplantation: a randomized multicenter study. Transplantation Proceedings 2006;38(8):2419-23. [MEDLINE: ] - PubMed
    1. Jardine AG, Mann JF, Oddou P, Mann J, Pedersen T, Ruilope LM. Valsartan is effective in patients with post-transplant hypertension [abstract no: A3639]. Journal of the American Society of Nephrology 2000;11(Sept):692A. [CENTRAL: CN-00583214]
Aros 2005 {published data only}
    1. Aros CA, Ardiles LG, Schneider HO, Flores CA, Alruiz PA, Jerez VR, et al. No gender-associated differences of cyclosporine pharmacokinetics in stable renal transplant patients treated with diltiazem. Transplantation Proceedings 2005;37(8):3364-6. [MEDLINE: ] - PubMed
Barenbrock 2001 {published data only}
    1. Barenbrock M, Kosch M, Kobelt V, Hohage H, Rahn KH, Hausberg M. A randomised trial of effects of AT1-rezeptor- vs. calcium-channel-blockade on arterial function in hypertensive renal transplant recipients [abstract]. Deutsche Medizinische Wochenschrift 2001;126:S193. [CENTRAL: CN-00382259]
    1. Kosch M, Barenbrock M, Kobelt V, Hohage H, Rahn KH, Hausberg M. Studies of effects of antihypertensive treatment by AT1-receptor- vs. calcium-channel-blockade on sympathetic nerve activity in renal transplant recipients [abstract]. Deutsche Medizinische Wochenschrift 2001;126(Suppl 3):S196. [CENTRAL: CN-00449923]
Barri 1995 {published data only}
    1. Barri YM, Ramos EL, Orig J, Karlix J, Peterson JC, Parris CJ. Isradipine (ISR) in the treatment of hypertension in renal transplant patients (RTP) on cyclosporin (CSA): a randomized open-label cross-over study [abstract]. Journal of the American Society of Nephrology 1995;6(3):1072. [CENTRAL: CN-00483144]
Beckingham 1995 {published data only}
    1. Beckingham IJ, Hinwood M, Woodrow G, Burden RP. Use of ACE inhibitors to control transplant erythrocytosis [abstract]. Nephrology Dialysis Transplantation 1993;8(9):1035. [CENTRAL: CN-00583801]
    1. Beckingham IJ, Woodrow G, Hinwood M, Rigg KM, Morgan AG, Burden RP, et al. A randomized placebo-controlled study of enalapril in the treatment of erythrocytosis after renal transplantation. Nephrology Dialysis Transplantation 1995;10(12):2316-20. [MEDLINE: ] - PubMed
    1. Woodrow G, Beckingham IJ, Hinwood M, Broughton-Pipkin F. A randomized placebo-controlled study of enalapril in post-transplant erythrocytosis [abstract]. Nephrology Dialysis Transplantation 1995;10(5):730. [CENTRAL: CN-00448419] - PubMed
Cai 2011 {published data only}
    1. Cai J, Huang Z, Yang G, Cheng K, Ye Q, Ming Y, et al. Comparing antihypertensive effect and plasma ciclosporin concentration between amlodipine and valsartan regimens in hypertensive renal transplant patients receiving ciclosporin therapy. American Journal of Cardiovascular Drugs 2011;11(6):401-9. [MEDLINE: ] - PubMed
    1. Huang Z, Cai J, Yang G, Yuan H. Comparing antihypertensive effect and plasma CsA concentration between amlodipine and valsartan regimen in hypertensive renal transplant patients with CsA therapy [abstract no: 0039]. International Journal of Cardiology 2011;152(Suppl 1):S62-3. [EMBASE: 70574084]
Calo 2002 {published data only}
    1. Calo L, Giacon B, Davis PA, Pagnin E, Piccin A, Riegler P, et al. Oxidative stress and TGFbeta in kidney-transplanted patients with cyclosporin-induced hypertension. Effect of carvedilol and nifedipine. Clinical Nephrology 2002;58(2):103-10. [MEDLINE: ] - PubMed
Campistol 1991 {published data only}
    1. Campistol JM, Oppenheimer F, Vilardell J, Ricart MJ, Alcaraz A, Ponz E, et al. Interaction between ciclosporin and diltiazem in renal transplant patients. Nephron 1991;57(2):241-2. [MEDLINE: ] - PubMed
Cartier 1978 {published data only}
    1. Cartier F, Merot ML. Effect of sustained release alprenolol in hypertension uncontrolled by chlorothiazide and dihydralazine. Study in double blind (author's transl) [Effet de l'alprénolol a longue durée d'action sur les hypertensions artérielles mal contrôlées par l'association thiazidique-dihydralazine. Etude en double aveugle]. Semaine des Hopitaux 1978;54(25-28):855-7. [MEDLINE: ] - PubMed
Castelao 1993 {published data only}
    1. Castelao AM, Grino JM, Galceran JM, Andres E, Gil VS, Seron D, et al. Comparative randomized study of calcium channel blockers vs. angiotensin converting enzyme inhibitors in the treatment of hypertension under cyclosporine immunosuppression [Estudio comparativo randomizado de los antagonistas del calcio (verapamil) versus inhibidores del enzima de conversion de la angiotensina (enalapril) en el tratamiento de la hipertension arterial postrasplante renal bajo inmunosupresion con ciclosporina]. Nefrologia 1993;13(Suppl 2):47-51. [EMBASE: 23285986]
    1. Castelao AM, Grino JM, Galceran JM, Andres E, GilVernet S, Seron D, et al. Calcium antagonists (verapamil) vs ACEI (enalapril) in the treatment of hypertension of kidney transplanted patients under cyclosporin A and prednisone immunosuppression. A randomized study [abstract]. In: 12th International Congress of Nephrology; 1993 Jun 13-18; Jerusalem, Israel. 1993:250. [CENTRAL: CN-00644360]
CELART 2022 {published data only}
    1. Kuzmiuk-Glembin I, Heleniak Z, Pieta R, Glyda M, Lizakowski S, Renke M, et al. Short-term effects of losartan on cardiovascular risk and allograft injury biomarkers in kidney transplant recipients. Transplantation Proceedings 2022;54(4):981-8. [MEDLINE: ] - PubMed
Celik 2000 {published data only}
    1. Celik A, Ok E, Unsal A, Toz H, Atabay G. Comparison of enalapril and losartan in the treatment of posttransplant erythrocytosis. Nephron 2000;86(3):394-5. [MEDLINE: ] - PubMed
    1. Celik A, Unsal A, Duman S, Ok E, Ozkahya M, Uslu A, et al. Enalapril and losartan on the treatment of posttransplantation erythrocytosis [abstract]. Nephrology Dialysis Transplantation 1999;14(9):A292. [CENTRAL: CN-00483807]
Chanard 2003 {published data only}
    1. Chanard J, Toupance O, Lavaud S, Hurault D, Bernaud C, Moulin B. Amlodipine reduces cyclosporin-induced hyperuricaemia in hypertensive renal transplant recipients. Nephrology Dialysis Transplantation 2003;18(10):2147-53. [MEDLINE: ] - PubMed
    1. Chanard J, Toupance O, Lavaud S, Ligny BH, Moulin B. Amlodipine reduces cyclosporine-induced hyperuricemia in hypertensive renal transplant recipients [abstract no: A4613]. Journal of the American Society of Nephrology 2001;12(Program & Abstracts):882A. [CENTRAL: CN-00550395]
Chen 2013a {published data only}24376050
    1. Chen SY, Li JL, Meng FH, Wang XD, Liu T, Li J, et al. Individualization of tacrolimus dosage basing on cytochrome P450 3A5 polymorphism - a prospective, randomized, controlled study. Clinical Transplantation 2013;27(3):E272-81. [MEDLINE: ] - PubMed
Chen 2013b {published data only}2437605
    1. Chen SY, Li JL, Meng FH, Wang XD, Liu T, Li J, et al. Individualization of tacrolimus dosage basing on cytochrome P450 3A5 polymorphism - a prospective, randomized, controlled study. Clinical Transplantation 2013;27(3):E272-81. [MEDLINE: ] - PubMed
Chrysostomou 1993 {published data only}
    1. Chrysostomou A, Walker RG, Russ GR, d'Apice AJ, Kincaid-Smith P, Mathew TH. Diltiazem in renal allograft recipients receiving cyclosporine. Transplantation 1993;55(2):300-4. [MEDLINE: ] - PubMed
    1. Kelly JJ, Walker RG, d'Apice AJ, Kincaid-Smith P. A prospective study of the effect of diltiazem in renal allograft recipients receiving cyclosporine A: preliminary results. Transplantation Proceedings 1990;22(5):2127-8. [MEDLINE: ] - PubMed
Cockfield 2019 {published data only}
    1. Cockfield S, Rush D, Jevnikar A, Paquet M, Prasad G, Howell J. Standard vs. low dose extended-release tacrolimus (Advagraf) in de novo renal transplant: 6-month interim analysis [abstract no: D3067]. Transplantation 2014;98(Suppl 1):685. [EMBASE: 71545865]
    1. Cockfield S, Rush D, Wilson S, Howell J. Impact of antihypertensive (AHT) choice and Advagraf dose on interstitial fibrosis/tubular atrophy (IF/TA) and IF/TA progression in renal allografts 24 months post-transplantation (Tx) [abstract no: 70]. American Journal of Transplantation 2017;17(Suppl 3):231. [EMBASE: 615704881]
    1. Cockfield SM, Wilson S, Campbell PM, Cantarovich M, Gangji A, Houde I, et al. Comparison of the effects of standard vs low-dose prolonged-release tacrolimus with or without ACEi/ARB on the histology and function of renal allografts. American Journal of Transplantation 2019;19(6):1730-44. [MEDLINE: ] - PMC - PubMed
    1. Rush D, Cockfield S, Wilson S, Howell J. Impact of antihypertensive (AHT) choice and advagraf dose on immunologic events in renal allografts 24 months post-transplantation (Tx) [abstract]. American Journal of Transplantation 2017;17(Suppl 3):231. [EMBASE: 615704915]
    1. Rush D, Cockfield S, Wilson S, Schwartz J. Long-term impact of antihypertensive treatment and tacrolimus dose in renal allograft recipients 5 years post-transplantation [abstract no: C207]. American Journal of Transplantation 2019;19(Suppl 3):966. [EMBASE: 628453151]
Dawidson 1991 {published data only}
    1. Dawidson I, Lu C, Palmer B, Peters P, Rooth P, Risser R, et al. Verapamil (VP) improves the outcome after renal transplantation (CRT). Transplant International 1992;5 Suppl 1:S60-2. [PMID: ] - PubMed
    1. Dawidson I, Rooth P, Alway C, Dulzo T, Palmer B, Lu C, et al. Verapamil prevents posttransplant delayed function and cyclosporine A nephrotoxicity. Transplantation Proceedings 1990;22(4):1379-80. [MEDLINE: ] - PubMed
    1. Dawidson I, Rooth P, Lu C, Sagalowsky A, Diller K, Palmer B, et al. Verapamil improves the outcome after cadaver renal transplantation. Journal of the American Society of Nephrology 1991;2(5):983-90. [MEDLINE: ] - PubMed
El Agroudy 2003 {published data only}
    1. El Agroudy A, Hassan N, El Sawy E, Mostafa A, Moussa O, Sobh M, et al. Losartan could prevent progression of chronic allograft nephropathy: a prospective randomized study [abstract no: T683]. Nephrology Dialysis Transplantation 2003;18(Suppl 4):500. [CENTRAL: CN-00445210]
    1. El Agroudy AE, Hassan NA, Foda MA, Ismail AM, el Sawy EA, Mousa O, et al. Effect of angiotensin II receptor blocker on plasma levels of TGF-beta 1 and interstitial fibrosis in hypertensive kidney transplant patients. American Journal of Nephrology 2003;23(5):300-6. [MEDLINE: ] - PubMed
Elham 2019 {published data only}
    1. Elham S, Mohsen N. ARBS usage after kidney transplantation and safety; a randomized, double-blinded placebo-controlled study [abstract]. Iranian Journal of Kidney Diseases 2019;13(Suppl 1):84. [EMBASE: 632172890]
Formica 2006 {published data only}
    1. Formica RN, Friedman AL, Lorber MI, Bia MJ. A randomized controlled trial comparing losartan to amlodipine as initial therapy for hypertension in the immediate post transplant period [abstract no: 174]. American Journal of Transplantation 2005;5(Suppl 11):200. - PubMed
    1. Formica RN, Friedman AL, Lorber MI, Smith JD, Eisen T, Bia MJ. A randomized trial comparing losartan with amlodipine as initial therapy for hypertension in the early post-transplant period. Nephrology Dialysis Transplantation 2006;21(5):1389-94. [MEDLINE: ] - PubMed
Frei 1990 {published data only}
    1. Frei U, Harms A, Bakovic-Alt R, Pichlmayr R, Koch KM. Calcium channel blockers for kidney protection. Journal of Cardiovascular Pharmacology 1990;16 Suppl 6:S11-5. [MEDLINE: ] - PubMed
    1. Frei U, Margreiter R, Harms A, Bosmuller C, Neumann KH, Viebahn R, et al. Preoperative graft reperfusion with a calcium antagonist improves initial function: preliminary results of a prospective randomized trial in 110 kidney recipients. Transplantation Proceedings 1987;19(5):3539-41. [MEDLINE: ] - PubMed
Glicklich 2011 {published data only}
    1. Glicklich D, Gordillo R, Supe K, Tapia R, Woroniecki R, Solorzano C, et al. Angiotensin converting enzyme inhibitor use soon after renal transplantation: a randomized, double-blinded placebo-controlled safety study. Clinical Transplantation 2011;25(6):843-8. [MEDLINE: ] - PubMed
    1. Gordillo R, Coco M, Woroniecki R, Glicklich D. The use of ACE inhibitors in the early post-renal transplant period [abstract no: TH-PO1049]. Journal of the American Society of Nephrology 2009;20(Abstract Suppl):351A.
Gossmann 2002 {published data only}
    1. Gossmann J, Mondorf U, Dietz A, Kramer W, Kachel HG, Geiger H, et al. A randomized prospective double-blind placebo-controlled study of gallopamil, calcium antagonist of the verapamil type, in stable cyclosporine-treated renal transplant recipients. Transplantation Proceedings 2002;34(5):1767-70. [MEDLINE: ] - PubMed
    1. Scheuermann EH, Gossmann J, Peschke B, Kachel HG, Schoeppe W. A randomized, double blind, placebo controlled study of gallo-pamil in cyclosporine treated renal transplant recipients [abstract no: 1136]. Journal of the American Society of Nephrology 1995;6(3):1114. [CENTRAL: CN-00485739]
Gronhagen‐Riska 1984 {published data only}
    1. Gronhagen-Riska C, Fyhrquist F, Ahonen J, Willebrand E, Hayry P. Angiotensin I-converting enzyme inhibition after renal transplantation. Scandinavian Journal of Urology & Nephrology Supplementum 1984;79:63-7. [MEDLINE: ] - PubMed
Guerin 1989 {published data only}
    1. Guerin C, Berthoux P, Broyet C, Berthoux F. Effects of diltiazem on arterial pressure and renal function in renal transplanted and cyclosporin A treated subjects. Results after 3 months of a prospective study. Archives des Maladies du Coeur et des Vaisseaux 1989;82(7):1223-7. [MEDLINE: ] - PubMed
Halimi 2007 {published data only}
    1. Halimi JM, Giraudeau B, Buchler M, Al Najjar A, Etienne I, Laouad I, et al. Enalapril/amlodipine combination in cyclosporine-treated renal transplant recipients: a prospective randomized trial. Clinical Transplantation 2007;21(2):277-84. [MEDLINE: ] - PubMed
Harper 1996 {published data only}
    1. Donnelly P. Effect of nifedipine on immediate graft function on cyclosporin-treated renal transplant patients: a prospective randomized study [abstract]. British Journal of Surgery 1992;79(5):445. [CENTRAL: CN-00583384]
    1. Donnelly PK, Feehally J, Jurewicz A, Furness P, McCullough T, Harper SJ, et al. Renal transplantation: nifedipine for the nonstarters? A prospective randomised study. Transplantation Proceedings 1993;25(1 Pt 1):600-1. [MEDLINE: ] - PubMed
    1. Harper SJ, Abrams K, Harris K, Jurewicz A, Walls J, Veitch P, et al. Beneficial effects of oral nifedipine on cyclos(CsA)-treated renal transplant recipients [abstract]. Nephrology Dialysis Transplantation 1995;10(12):2387. [CENTRAL: CN-00261157] - PubMed
    1. Harper SJ, Harris K, Jurewicz A, Walls J, Veitch P, Feehally J. Beneficial effects of oral nifedipine on cyclosporin (cya) treated renal allograft recipients - a randomised prospective study [abstract]. In: ISN XIII International Congress of Nephrology; 1995 Jul 2-6; Madrid (Spain). 1995:381. [CENTRAL: CN-00509226]
    1. Harper SJ, Moorhouse J, Abrams K, Jurewicz A, Nicholson M, Horsburgh T, et al. The beneficial effects of oral nifedipine on cyclosporin-treated renal transplant recipients--a randomised prospective study. Transplant International 1996;9(2):115-25. [MEDLINE: ] - PubMed
Hausberg 1999 {published data only}
    1. Hausberg M, Barenbrock M, Hohage H, Heidenreich S, Rahn KH. Efficacy and safety of the ace-inhibitor quinapril as compared to the beta-blocker atenolol in hypertensive renal allograft recipients [abstract]. In: 35th Congress European Renal Association. European Dialysis and Transplantation Association; 1998 Jun 6-9; Rimini, Italy. 1998:359. [CENTRAL: CN-00484273]
    1. Hausberg M, Barenbrock M, Hohage H, Muller S, Heidenreich S, Rahn KH. ACE inhibitor versus beta-blocker for the treatment of hypertension in renal allograft recipients. Hypertension 1999;33(3):862-8. [MEDLINE: ] - PubMed
    1. Suwelack B, Gerhardt U, Hausberg M, Rahn KH, Hohage H. Comparison of quinapril versus atenolol: effects on blood pressure and cardiac mass after renal transplantation. American Journal of Cardiology 2000;86(5):583-5. [MEDLINE: ] - PubMed
    1. Suwelack B, Kempkes-Koch M, Kobelt V, Hillebrand U, Matzkies F, Gerhardt U, et al. Impact of ACE polymorphism on renal allograft function, blood pressure, and proteinuria under ACE inhibition. Transplantation Proceedings 2002;34(5):1763-6. [MEDLINE: ] - PubMed
    1. Suwelack B, Kobelt V, Erfmann M, Hausberg M, Gerhardt U, Rahn KH, et al. Long-term follow-up of ACE-inhibitor versus beta-blocker treatment and their effects on blood pressure and kidney function in renal transplant recipients. Transplant International 2003;16(5):313-20. [MEDLINE: ] - PubMed
Hernandez 1995 {published data only}
    1. Hernandez E, Morales JM, Andres A, Ortuno B, Praga M, Alcazar JM, et al. Usefulness and safety of treatment with captopril in posttransplant erythrocytosis. Transplantation Proceedings 1995;27(4):2239-41. [MEDLINE: ] - PubMed
    1. Hernandez E, Morales JM, Andres A, Ortuno B, Praga M, Alcazar JM, et al. Usefulness of treatment with captopril on post-transplant erythrocytosis (PTE). A controlled study [abstract no: 56P]. Journal of the American Society of Nephrology 1993;4(Program & Abstracts):940. [CENTRAL: CN-00484334]
    1. Hernandez E, Morales JM. Effect of captopril on post-transplant erythrocytosis: a controlled study [abstract]. Nephrology Dialysis Transplantation 1993;8(9):1041. [CENTRAL: CN-00260892]
Hernandez 2000 {published data only}
    1. Hernandez D, Lacalzada J, Linares J, Barragan A, Higueras L, Lorenzo V, et al. Regression of left ventricular hypertrophy (LVH) by lisinopril after renal transplantation (RT). Role of angiotensin-converting-enzyme (ACE) gene polymorphism [abstract no: T795]. Journal of the American Society of Nephrology 1998;9(Program & Abstracts):708A. [CENTRAL: CN-00445703]
    1. Hernandez D, Lacalzada J, Linares J, Rodriguez A, Laynez I, Higueras L, et al. Regression of left ventricular hypertrophy (LVH) by an angiotensin-converting-enzyme inhibitor (ACEI) after renal transplantation (RT) [abstract no: A3317]. Journal of the American Society of Nephrology 1997;8(Program & Abstracts):714A. [CENTRAL: CN-00445704]
    1. Hernandez D, Lacalzada J, Salido E, Linares J, Barragan A, Lorenzo V, et al. Regression of left ventricular hypertrophy by lisinopril after renal transplantation: role of ACE gene polymorphism. Kidney International 2000;58(2):889-97. [MEDLINE: ] - PubMed
Inigo 2001 {published data only}
    1. Inigo P, Campistol JM, Lario S, Bescos M, Oppenheimer F. Losartan normalizes the plasma levels of TGF-ß1 in a random, crossover study (losartan vs. amlodipine) in renal transplant patients treated with CsA [abstract no: 0657]. In: XVIII International Congress of the Transplantation Society; 2000 Aug 27-Sep 1; Rome, Italy. 2000. [CENTRAL: CN-00671770]
    1. Inigo P, Campistol JM, Lario S, Piera C, Campos B, Bescos M, et al. Effects of losartan and amlodipine on intrarenal hemodynamics and TGF-beta(1) plasma levels in a crossover trial in renal transplant recipients. Journal of the American Society of Nephrology 2001;12(4):822-7. [MEDLINE: ] - PubMed
    1. Inigo P, Campistol JM, Piera C, Oppenheimer F. Effects on renal hemodynamics of losartan vs. amlodipine in a cross-over trial in renal transplant patients [abstract]. In: XVIII International Congress of the Transplantation Society; 2000 Aug 27-Sep 1; Rome, Italy. 2000. [CENTRAL: CN-00445853]
    1. Inigo PJ, Campistol JM, Lario S, Bescos M, Oppenheimer F. Losartan normalizes the plasma levels of TGF-b1 in a random, crossover study (losartan vs amlodipine) in renal transplant patients treated with cyclosporine [abstract no: A3838]. Journal of the American Society of Nephrology 1999;10(Program & Abstracts):759A. [CENTRAL: CN-00583346]
Kamper 2001 {published data only}
    1. Kamper A, Nielsen AH. Uricosuric effect of losartan in renal transplanted patients [abstract no: P0607]. In: XVIII International Congress of the Transplantation Society; 2000 Aug 27-Sep 1; Rome, Italy. 2000. [CENTRAL: CN-00465804]
    1. Kamper A, Nielsen AH. Uricosuric effect of losartan in renal transplanted patients. Transplantation Proceedings 2001;33(1-2):1201. [MEDLINE: ] - PubMed
    1. Kamper AL, Nielsen AH. Uricosuric effect of losartan in patients with renal transplants. Transplantation 2001;72(4):671-4. [MEDLINE: ] - PubMed
Kim 2002a {published data only}
    1. Kim IG, Bagdasaryan AR, Birukova LS, Iljinsky IM, Tomilina NA. The effect of enalapril on the progression of chronic allograft nephropathy [abstract no: T490]. Nephrology Dialysis Transplantation 2002;17(Suppl 1):324. [CENTRAL: CN-00644137]
Knoll 2008 {published data only}78129473
    1. Fergusson NA, Ramsay T, Chasse M, English SW, Knoll GA. Impact of using alternative graft function endpoints: a secondary analysis of a kidney transplant trial. Transplantation Direct 2019;5(4):e439. [MEDLINE: ] - PMC - PubMed
    1. Fergusson NA, Ramsay T, Chasse M, English SW, Knoll GA. The win ratio approach did not alter study conclusions and may mitigate concerns regarding unequal composite end points in kidney transplant trials. Journal of Clinical Epidemiology 2018;98:9-15. [MEDLINE: ] - PubMed
    1. Jadhav DL, Zimpelmann J, Kennedy C, Genest D, Takami K, Cavanagh E, et al. Urinary excretion of ACE, ACE2 and podocyte proteins in proteinuric renal transplant patients [abstract no: F-PO1224]. Journal of the American Society of Nephrology 2009;20(Abstract Suppl):392A.
    1. Knoll GA, Cantarovitch M, Cole E, Gill J, Gourishankar S, Holland D, et al. The Canadian ACE-inhibitor trial to improve renal outcomes and patient survival in kidney transplantation--study design. Nephrology Dialysis Transplantation 2008;23(1):354-8. [MEDLINE: ] - PubMed
    1. Knoll GA, Fergusson D, Chasse M, Hebert P, Wells G, Tibbles LA, et al. Ramipril versus placebo in kidney transplant patients with proteinuria: a multicentre, double-blind, randomised controlled trial. The Lancet Diabetes & Endocrinology 2016;4(4):318-26. [MEDLINE: ] - PubMed
Kumana 2003 {published data only}
    1. Kumana CR, Tong MK, Li CS, Lauder IJ, Lee JS, Kou M, et al. Diltiazem co-treatment in renal transplant patients receiving microemulsion cyclosporin. British Journal of Clinical Pharmacology 2003;56(6):670-8. [MEDLINE: ] - PMC - PubMed
Kuypers 2004 {published data only}
    1. Kuypers DR, Neumayer HH, Fritsche L, Budde K, Banrenterghem Y. Calcium channel blockade and preservation of renal allograft function in cyclosporine-treated recipients: a multicentre, prospective randomized, placebo-controlled, 2-year study [abstract no: SA-PO1044]. Journal of the American Society of Nephrology 2004;15(Oct):526A. [CENTRAL: CN-00644135] - PubMed
    1. Kuypers DR, Neumayer HH, Fritsche L, Budde K, Rodicio JL, Vanrenterghem Y, et al. Calcium channel blockade and preservation of renal graft function in cyclosporine-treated recipients: a prospective randomized placebo-controlled 2-year study. Transplantation 2004;78(8):1204-11. [MEDLINE: ] - PubMed
    1. Kuypers DRJ, Neumayer HH, Fritsche L, Budde K, Vanrenterghem Y. Calcium channel blockade and prevention of renal graft function deterioration in cyclosporine-treated recipients: a multi-centre prospective, randomized, placebo-controlled, 2-year study [abstract no: 1001]. American Journal of Transplantation 2004;4(Suppl 8):432. [CENTRAL: CN-00509299] - PubMed
Ladefoged 1994 {published data only}
    1. Andersen CB, Ladefoged SD, Larsen S. Acute renal allograft rejection, morphology and immunology in 'zero-hour' biopsies and follow-up biopsies with special emphasis on cellular infiltrates and adhesion molecules [abstract]. Nephrology Dialysis Transplantation 1993;8(9):1033-4. [CENTRAL: CN-00601963]
    1. Andersen CB, Ladefoged SD, Larsen S. Morphology and immunology in 'zero-hour' and follow-up biopsies from 39 renal allotransplanted patients with special emphasis on acute rejection [abstract]. Nephrology Dialysis Transplantation 1994;9(4):446. [CENTRAL: CN-00260943]
    1. Ladefoged SD, Pedersen E, Hammer M, Rasmussen KC, Hansen FM, Andersen CB. Influence of diltiazem on renal function and rejection in renal allograft recipients receiving triple-drug immunosuppression: a randomized, double-blind, placebo-controlled study. Nephrology Dialysis Transplantation 1994;9(5):543-7. [MEDLINE: ] - PubMed
Lehtonen 2000 {published data only}
    1. Lehtonen S, Isoniemi H, Salmela K. A randomised placebo controlled study on initial isradipine therapy in renal transplantation: long-term results [abstract]. Nephrology Dialysis Transplantation 2000;15(9):A276. [CENTRAL: CN-00461150]
Li 2011 {published data only}
    1. Li JL, Wang XD, Chen SY, Liu LS, Fu Q, Chen X, et al. Effects of diltiazem on pharmacokinetics of tacrolimus in relation to CYP3A5 genotype status in renal recipients: from retrospective to prospective. Pharmacogenomics Journal 2011;11(4):300-6. [MEDLINE: ] - PubMed
Liew 2019 {published data only}
    1. Liew H, Roberts M, McMahon L. A pilot study of spironolactone on the endothelial glycocalyx in kidney transplant recipients [abstract no: MON-181]. Kidney International Reports 2019;4(7 Suppl):S376. [EMBASE: 2002179913]
Madsen 1998 {published data only}
    1. Madsen JK, Kornerup HJ, Sorensen SS, Zachariae H, Pedersen EB. Ciclosporine nephrotoxicity can be counteracted by a calcium antagonist (felodipine) in acute and short-term studies [abstract no: 1126]. Journal of the American Society of Nephrology 1995;6(3):1102. [CENTRAL: CN-00485392]
    1. Madsen JK, Sorensen SS, Hansen HE, Pedersen EB. The effect of felodipine on renal function and blood pressure in cyclosporin-treated renal transplant recipients during the first three months after transplantation. Nephrology Dialysis Transplantation 1998;13(9):2327-34. [MEDLINE: ] - PubMed
    1. Pedersen EB, Madsen JK, Sorensen SS, Zachariae H. Improvement in renal function by felodipine during cyclosporine treatment in acute and short-term studies. Kidney International - Supplement 1996;55:S94-6. [MEDLINE: ] - PubMed
Mandelbrot 2015 {published data only}
    1. Mandelbrot D, Alberu J, Barama A, Marder B, Tedesco-Silva H, Flynn A, et al. Effect of ramipril on urinary protein excretion in maintenance renal transplant patients converted to sirolimus [abstract no: 2213]. Transplantation 2014;98(Suppl 1):121. [EMBASE: 71543913] - PubMed
    1. Mandelbrot DA, Alberu J, Barama A, Marder BA, Silva HT Jr, Flechner SM, et al. Effect of ramipril on urinary protein excretion in maintenance renal transplant patients converted to sirolimus. American Journal of Transplantation 2015;15(12):3174–84. [DOI: doi: 10.1111/ajt.13384] [MEDLINE: ] - PubMed
Markell 1990 {published data only}
    1. Markell MS, Joseph N, Walters I, Friedman EA. Enalapril effectively treats diabetic and non-diabetic renal allograft recipients with post-transplant hypertension [abstract]. Kidney International 1990;37:401. [CENTRAL: CN-00644136]
Martinez‐Castelao 1998 {published data only}
    1. Martinez-Castelao A, Hueso M, Sanz V, Rejas J, Alsina J, Grinyo JM. Treatment of hypertension after renal transplantation: long-term efficacy of verapamil, enalapril, and doxazosin. Kidney International - Supplement 1998;68:S130-4. [MEDLINE: ] - PubMed
Martinez‐Castelao 2001 {published data only}
    1. Castelao AM, Hueso M, Sanz V, Rejas J, Sarrias X, Alsina J, et al. Double blind, crossover, comparative study of doxazosin vs enalapril in the treatment of hypertension in renal transplantation under cyclosporin immunosuppression [abstract no: A4609]. Journal of the American Society of Nephrology 2001;12(Program & Abstracts):881A. [CENTRAL: CN-00550748]
    1. Martinez-Castelao A, Hueso M, Sanz V, Rejas J, Sarrias J, Alsina J, et al. Double-blind, crossover, comparative study of doxazosin and enalapril in the treatment of hypertension in renal transplant patients under cyclosporine immunosuppression. Transplantation Proceedings 2002;34(1):403-6. [MEDLINE: ] - PubMed
Medeiros 2010 {published data only}19419571
    1. Medeiros M, Ramirez S, Velasquez L, Hernandez AM, Valverde S, Vargas A, et al. Aldosterone blockade in children with chronic allograft nephropathy [abstract no: O-10]. Pediatric Nephrology 2010;25(9):1808. [EMBASE: 70438169]
    1. Medeiros M, Sosa J, Velasquez L, Hernandez M, Ramirez S, Valverde S, et al. Aldosterone blockade in children with chronic allograft nephropathy [abstract no: 1296]. American Journal of Transplantation 2010;10(Suppl 4):411. [EMBASE: 70464672]
    1. Medeiros M, Velasquez-Jones L, Hernandez AM, Ramon-Garcia G, Valverde S, Fuentes Y, et al. Randomized controlled trial of mineralocorticoid receptor blockade in children with chronic kidney allograft nephropathy. Clinical Journal of the American Society of Nephrology: CJASN 2017;12(8):1291-300. [MEDLINE: ] - PMC - PubMed
    1. Medeiros M, Velasquez-Jones L, Hernandez AM, Valverde S, Fuentes Y, Barrera-Chimal J, et al. Mineralocorticoid receptor blockade in children with chronic allograft injury [abstract no: 116]. Pediatric Transplantation 2013;17(Suppl 1):71. [EMBASE: 71163526]
    1. Medeiros M, Velasquez-Jones L, Maria HA, Ramirez S, Fuentes Y, Valverdes S, et al. Aldosterone blockade in children with chronic allograft nephropathy [abstract no: 234]. Pediatric Transplantation 2011;15(Suppl 1):98-9. [EMBASE: 70508755]
Midtvedt 2001 {published data only}
    1. Aasebo W, Midtvedt K, Hartmann A, Stavem K. Predictors of health-related quality of life in hypertensive recipients following renal transplantation. Clinical Transplantation 2005;19(6):756-62. [MEDLINE: ] - PubMed
    1. Asberg A, Midtvedt K, Vassbotn T, Hartmann A. Better microvascular function on long-term treatment with lisinopril than with nifedipine in renal transplant recipients. Nephrology Dialysis Transplantation 2001;16(7):1465-70. [MEDLINE: ] - PubMed
    1. Midtvedt K, Hartmann A, Foss A, Fauchald P, Nordal KP, Rootwelt K, et al. Improved long-term graft function and fewer rejection episodes in hypertensive renal transplant patients treated with nifedipine as compared to lisinopril [abstract no: A3731]. Journal of the American Society of Nephrology 1999;10(Program & Abstracts):737A. [CENTRAL: CN-00626112]
    1. Midtvedt K, Hartmann A, Foss A, Fauchald P, Nordal KP, Rootwelt K, et al. Sustained improvement of renal graft function for two years in hypertensive renal transplant recipients treated with nifedipine as compared to lisinopril. Transplantation 2001;72(11):1787-92. [MEDLINE: ] - PubMed
    1. Midtvedt K, Hartmann A, Holdaas H, Fauchald P. Efficacy of nifedipine or lisinopril in the treatment of hypertension after renal transplantation: a double-blind randomised comparative trial [abstract no: A4744]. Journal of the American Society of Nephrology 2001;12(Program & Abstracts):907A. - PubMed
Moes 2017 {published data only}
    1. Moes AD, Hesselink DA, Van den Meiracker AH, Zietse R. Thiazide diuretics for hypertension in kidney transplant recipients using tacrolimus [abstract no: SA-PO629]. Journal of the American Society of Nephrology 2015;26(Abstract Suppl):769A. [EMBASE: 641100352]
    1. Moes AD, Hesselink DA, den Meiracker AH, Zietse R, Hoorn EJ. Chlorthalidone versus amlodipine for hypertension in kidney transplant recipients treated with tacrolimus: a randomized crossover trial. American Journal of Kidney Diseases 2017;69(6):796-804. [MEDLINE: ] - PubMed
Morales 1989 {published data only}
    1. Morales JM, Andres A, Alvarez C, Prieto C, Ortuno B, Ortuno T, et al. Calcium channel blockers and early cyclosporine nephrotoxicity after renal transplantation: a prospective randomized study. Transplantation Proceedings 1990;22(4):1733-5. [MEDLINE: ] - PubMed
    1. Morales JM, Andres A, Prieto C, Ortuno B, Estenoz J, Dorado C, et al. Calcium antagonist treatment of recipient attenuates early cyclosporine nephrotoxicity in renal transplantation. A prospective randomized trial [abstract]. Kidney International 1989;36(1):148. [CENTRAL: CN-00782467] - PubMed
    1. Morales JM, Andres A, Prieto C, Ortuno B, Estenoz J, Dorado C, et al. Calcium antagonist treatment of recipients minimizes early cyclosporine nephrotoxicity in renal transplantation: a prospective randomized trial. Transplantation Proceedings 1989;21(1 Pt 2):1537-9. [MEDLINE: ] - PubMed
Morales 1994 {published data only}
    1. Morales JM, Andres A, Hernandez E, Praga M, Ruilope LM, Rodicio JL. Long-term protective effect of calcium antagonist (CA) on renal function in hypertensive renal transplant (RT) patients on ciclosporine (CyA) therapy. a five-year prospective randomized study [abstract]. Journal of the American Society of Nephrology 1993;4(Program & Abstracts):950. [CENTRAL: CN-00487735]
    1. Morales JM, Andres A, Rodicio JL. Beneficial effects of calcium antagonists on cyclosporin nephrotoxicity after clinical renal transplantation. Nephrology Dialysis Transplantation 1993;8(9):880. [MEDLINE: ] - PubMed
    1. Morales JM, Andres A, Rodriguez PE, Alcazar JM, Montoyo C, Rodicio JL. Calcium antagonist therapy prevents chronic cyclosporine nephrotoxicity after renal transplantation: a prospective study. Transplantation Proceedings 1992;24(1):89-91. [MEDLINE: ] - PubMed
    1. Morales JM, Andres A. Calcium antagonist therapy prevents chronic cyclosporin nephrotoxicity after renal transplantation: A prospective study [abstract]. Nephrology Dialysis Transplantation 1991;6:832. [CENTRAL: CN-00260661] - PubMed
    1. Morales JM, Rodriguez-Paternina E, Araque A, Andres A, Hernandez E, Ruilope LM, et al. Long-term protective effect of a calcium antagonist on renal function in hypertensive renal transplant patients on cyclosporine therapy: a 5-year prospective randomized study. Transplantation Proceedings 1994;26(5):2598-9. [MEDLINE: ] - PubMed
Mourad 1993 {published data only}
    1. Mourad G, Ribstein J, Mimran A. Converting-enzyme inhibitor versus calcium antagonist in cyclosporine-treated renal transplants. Kidney International 1993;43(2):419-25. [MEDLINE: ] - PubMed
Nafar 2018 {published data only}ISRCTN15884223
    1. Nafar M, Samavat S, Shahraki E. Down regulation of profibrotic gene expression by angiotensin receptor blockers. Iranian Journal of Kidney Diseases 2018;12(6):369-75. [MEDLINE: ] - PubMed
    1. Shahraki E, Nafar M, Samavat S. Angiotensin II receptor blocker inhibitor (ARBs) use after kidney transplantation and safety: a randomized, double blinded placebo-controlled study [abstract no: 232.3]. Transplantation 2019;103(11 Suppl 1):S45. [EMBASE: 629910158]
    1. Shahraki E, Nafar M. Angiotensin II receptor blocker inhibitor use after kidney transplantation and safety: a randomized, double-blinded placebo-controlled study [abstract no: 232.3]. Transplantation 2020;104(Suppl 3):S425-6. [EMBASE: 633381365]
    1. Shahraki MD, Nafar M, Samavat S. Angiotensin receptor blockers down regulate profibrotic gene expression [abstract no: SUN-116]. Kidney International Reports 2019;4(7 Suppl):S205. [EMBASE: 30595567]
Nouri‐Majalan 2009 {published data only}
    1. Nouri-Majalan N, Ghafari A, Moghaddasi S. Effect of angiotensin II type-1 receptor blockers on stable allograft kidneys: prospective randomized study. Transplantation Proceedings 2009;41(7):2832-4. [MEDLINE: ] - PubMed
    1. Nouri-Majalan N, Moghaddasi SM. Effect of losartan on dynamic tissue perfusing of renal allograft measure by colour Doppler sonography: clinical trial period [abstract no: M-PO-0878]. In: 4th World Congress of Nephrology.19th International Congress of the International Society of Nephrology (ISN); 2007 Apr 21-25; Rio de Janeiro, Brazil. 2007:296.
    1. Nouri-Majalan N, Nafisi R, Moghadasi-Mousavi S. Effect of losartan on Doppler sonography indices in kidney transplant patients: a randomized clinical trial. Vascular Health & Risk Management 2009;5(1):97-100. [MEDLINE: ] - PMC - PubMed
Ok 1995 {published data only}
    1. Ok E, Akcicek F, Toz H, Kurat S, Tobu M, Baci A, et al. Comparison of the effects of enalapril and theophylline on polycythemia after renal transplantation. Transplantation 1995;59(11):1623-6. [MEDLINE: ] - PubMed
    1. Ok E, Akcicek F. Comparison of enalapril and theophylline treatment for posttransplant erythrocytosis (PTE) [abstract]. Nephrology Dialysis Transplantation 1995;10(6):1070. [CENTRAL: CN-00261155]
Paoletti 2007 {published data only}94487168
    1. Paoletti E, Amidone M, Cassottana P, Gherzi M, Rolla D, Cannella G. Regression of left ventricular hypertrophy by ACE-inhibitors is observed only in cyclosporine and not in tacrolimus - treated renal transplant recipients [abstract no: SaP494]. Nephrology Dialysis Transplantation 2007;22:vi401. [CENTRAL: CN-00653732]
    1. Paoletti E, Bellino D, Marsano L, Cassottana P, Rolla D, Ratto E. Effects of ACE inhibitors on long-term outcome of renal transplant recipients: a randomized controlled trial. Transplantation 2013;95(6):889-95. [MEDLINE: ] - PubMed
    1. Paoletti E, Cassottana P, Amidone M, Gherzi M, Rolla D, Cannella G. ACE inhibitors and persistent left ventricular hypertrophy after renal transplantation: a randomized clinical trial. American Journal of Kidney Diseases 2007;50(1):133-42. [MEDLINE: ] - PubMed
Patton 1994 {published data only}
    1. Patton PR, Brunson ME, Pfaff WW, Howard RJ, Peterson JC, Ramos EL, et al. A preliminary report of diltiazem and ketoconazole. Their cyclosporine-sparing effect and impact on transplant outcome. Transplantation 1994;57(6):889-92. [MEDLINE: ] - PubMed
Pirsch 1993 {published data only}
    1. Pirsch JD, D'Alessandro AM, Roecker EB, Knechtle SJ, Reed A, Sollinger HW, et al. A controlled, double-blind, randomized trial of verapamil and cyclosporine in cadaver renal transplant patients. American Journal of Kidney Diseases 1993;21(2):189-95. [MEDLINE: ] - PubMed
Rahn 1999 {published data only}
    1. Barenbrock M, Breuer J, Schroder K, Wagner K, Neumayer HH, Rahn KH. A study of the nephroprotective effect of nitrendipine after renal transplantation [abstract]. In: ISN XIII International Congress of Nephrology; 1995 Jul 2-6; Madrid (Spain). 1995:387. [CENTRAL: CN-00602140]
    1. Barenbrock M, Colmorgen U, Firschka E, Gellert J, Lippert J, Schroder K, et al. A multicenter, randomized, double-blind, placebo-controlled, two-year trial to study the effect of nitrendipine on chronic renal transplant function. Clinical Nephrology 1995;43(6):388-91. [MEDLINE: ] - PubMed
    1. Barenbrock M, Klan R. Effect of nitrendipine on kidney function after renal transplantation [abstract]. Nephrology Dialysis Transplantation 1996;11(7):1466. [CENTRAL: CN-00261173]
    1. Rahn KH, Barenbrock M, Fritschka E, Heinecke A, Lippert J, Schroeder K, et al. Effect of nitrendipine on renal function in renal-transplant patients treated with cyclosporin: a randomised trial. Lancet 1999;354(9188):1415-20. [MEDLINE: ] - PubMed
    1. Rockstroh JK, Schobel HP, Vogt-Ladner G, Hauser I, Neumayer HH, Schmieder RE. Blood pressure independent effects of nitrendipine on cardiac structure in patients after renal transplantation. Nephrology Dialysis Transplantation 1997;12(7):1441-7. [MEDLINE: ] - PubMed
Rashtchizadeh 2007 {published data only}
    1. Aghaeishahsavari M, Noroozianavval M, Veisi P, Ghorbanihaghjo A, Rashtchizadeh N, Argani H. Enalapril and Losartan affect lipid peroxidation in renal transplant recipients with various renin-angiotensin system polymorphisms [abstract no: SP781]. Nephrology Dialysis Transplantation 2006;21(Suppl 4):iv278. [CENTRAL: CN-00783196]
    1. Argani H, Ghorbanihaghjo A, Aghaeishahsavari M, Noroozianavval M, Rashtchizadeh N, Veisi P, et al. Effects of losartan and enalapril on high-sensitivity C-reactive protein and total antioxidant in renal transplant recipients with Renin-Angiotensin system polymorphisms. Transplantation Proceedings 2008;40(1):16-21. [MEDLINE: ] - PubMed
    1. Argani H, Ghorbanihaghjo A, Rashtchizadeh N, Shahsavari MA, Noroozian M, Veisi P. Prevention of lipid peroxidationand DNA damage in renal transplantation by losartan and enalapril: the role of renin-angiotensin system polymorphisms [abstract no: PUB016]. Journal of the American Society of Nephrology 2006;17(Abstracts):820A.
    1. Ghorbanihaghjo A, Veisi P, Argani H, Aghaeishahsavari M, Noroozianavval M, Rashtchizadeh N, et al. Prevention of DNA damage in renal transplantation by losartan and enalapril: the role of renin-angiotensin system polymorphisms. Clinical & Experimental Nephrology 2008;12(1):65-73. [MEDLINE: ] - PubMed
    1. Noroozianavval M, Aghaeishahsavari M, Veisi P, Argani H, Ghorbanihaghjo A, Rashtchizadeh N. Prevention of DNA damage in renal transplantation by losartan and enalapril: the role of renin-angiotensin system polymorphisms [abstract no: P314]. Transplant International 2007;20(Suppl 2):170. [PMID: ] - PubMed
Riggio 1992 {published data only}
    1. Riggio R, Haschemeyer R, Cheigh J, Wong J, Tapia L, Sullivan J, et al. Does enalapril retard the progression of renal insufficiency in kidney transplant recipients? [abstract]. Journal of the American Society of Nephrology 1992;3(3):877. [CENTRAL: CN-00461597]
Rump 2000 {published data only}
    1. Rump LC, Grotz W, Kiefer A, Zimmerhackl L, Schollmeyer P. Calcium channel blockade and Cr51-EDTA -clearance in renal transplant patients [abstract no: A3373]. Journal of the American Society of Nephrology 1996;7(9):1921. [CENTRAL: CN-00782468]
    1. Rump LC, Oberhauser V, Schwertfeger E, Speidel L, Zimmerhackl L, Kirste G, et al. Dihydropyridine calcium antagonists and renal function in hypertensive kidney transplant recipients. Journal of Hypertension 2000;18(8):1115-9. [MEDLINE: ] - PubMed
Santos 2002 {published data only}
    1. Santos AF, Keitel E, Bittar A, Neto JP, Alves MD, Schaefer PG, et al. Long term results of diltiazem use associated to cyclosporin in renal transplantation [abstract no: 3327]. In: XIXth International Congress of the Transplantation Society; 2002 Aug 25-30; Miami (USA). 2002. [CENTRAL: CN-00416584]
Schmidt 2001 {published data only}
    1. Schmidt A, Gruber U, Bohmig G, Koller E M. The effect of ACE inhibitor and angiotensin II receptor antagonist therapy on serum uric acid levels and potassium homeostasis in hypertensive renal transplant recipients treated with cyclosporin [abstract no: 183]. Kidney & Blood Pressure Research 1999;22(4):272-3. [CENTRAL: CN-00758215] - PubMed
    1. Schmidt A, Gruber U, Bohmig G, Koller E, Mayer G. The effect of ACE inhibitor and angiotensin II receptor antagonist therapy on serum uric acid levels and potassium homeostasis in hypertensive renal transplant recipients treated with CsA. Nephrology Dialysis Transplantation 2001;16(5):1034-7. [MEDLINE: ] - PubMed
    1. Schmidt A, Gruber U, Bohmig G, Koller E, Mayer G. The effect of ace inhibitor and angiotensin II receptor antagonist therapy on serum uric acid levels and potassium homeostasis in hypertensive renal transplant recipients treated with cyclosporin [abstract no: P0565W]. In: XVIII International Congress of the Transplantation Society; 2000 Aug 27-Sep 1; Rome, Italy. 2000. [CENTRAL: CN-00447624] - PubMed
    1. Schmidt A, Gruber U, Bohmig G, Koller E, Mayer G. The effect of ace inhibitor and angiotensin II receptor antagonist therapy on serum uric acid levels and potassium homestasis in hypertensive renal transplant recipients treated with cyclosporin A [abstract no: A3772]. Journal of the American Society of Nephrology 1999;10(Program & Abstracts):746A. [CENTRAL: CN-00644133] - PubMed
SECRET 2004 {published data only}
    1. Philipp T, Legendre C, Geiger H, Schmieder RE, Kiel G, Hubner R, et al. Study on the evaluation of candesartan cilexetil after renal transplantation (SECRET Study) [abstract no: P04.09]. Kidney & Blood Pressure Research 2004;27(5-6):331-2. [CENTRAL: CN-00615858]
    1. Philipp T, Martinez F, Geiger H, Moulin B, Mourad G, Schmieder R, et al. Candesartan improves blood pressure control and reduces proteinuria in renal transplant recipients: results from SECRET. Nephrology Dialysis Transplantation 2010;25(3):967-76. [MEDLINE: ] - PubMed
Sennesael 1995 {published data only}
    1. Sennesael J, Lamote J, Violet I, Tasse S, Verbeelen D. Comparison of perindopril and amlodipine in cyclosporine-treated renal allograft recipients. Hypertension 1995;26(3):436-44. [MEDLINE: ] - PubMed
    1. Sennesael JJ, Lamote JG, Violet I, Tasse S, Verbeelen DL. Divergent effects of calcium channel and angiotensin converting enzyme blockade on glomerulotubular function in cyclosporine-treated renal allograft recipients. American Journal of Kidney Diseases 1996;27(5):701-8. [MEDLINE: ] - PubMed
Sharma 2012 {published data only}
    1. Sharma D, CAN INDIA. Chronic allograft nephropathy - an Indian study [abstract no: 1506]. Transplantation 2012;94(Suppl 10S):118. [EMBASE: 71250022]
    1. Sharma D. Chronic allograft nephropathy-an Indians study [abstract no: 1506]. Transplantation 2012;94(Suppl 10S):1041. [EMBASE: 71251864]
SMAhRT 2006 {published data only}
    1. Salzberg DJ, Karadsheh FF, Haririan A, Reddivari V, Weir MR. Specific management of anemia and hypertension in renal transplant recipients: influence of renin-Angiotensin system blockade. American Journal of Nephrology 2014;39(1):1-7. [MEDLINE: ] - PubMed
    1. Turner CL, Weinstein AJ, Weir MR, Salzberg DJ. Interim analysis of the SMAhRT study (Selective Management of Anemia and Hypertension in Renal Transplant Recipients) [abstract no: F-PO601]. Journal of the American Society of Nephrology 2007;18(Abstracts):231A. [CENTRAL: CN-00765449]
    1. Weinstein AJ, Seliger SL, Weir MR, Daniel SJ. Angiotensin receptor blocker's effect on hemoglobin in renal transplant patients - an interim analysis of the specific management of anemia and hypertension in renal transplant recipients trial (SMAhRT) [abstract no: F-PO1007]. Journal of the American Society of Nephrology 2006;17(Abstracts):548A. [CENTRAL: CN-00602019]
Song AZA 2011 {published data only}
    1. Song Y, Xue W, Tian P, Ding X, Pan X, Yan H, et al. Combination therapy with diltiazem plus CsA/MMF/Pred or CsA/Aza/Pred triple immunosuppressive regimens for use in clinical kidney transplantation in Northwestern China. European Journal of Clinical Pharmacology 2011;67(6):553-62. [MEDLINE: ] - PubMed
Song MMF 2011 {published data only}
    1. Song Y, Xue W, Tian P, Ding X, Pan X, Yan H, et al. Combination therapy with diltiazem plus CsA/MMF/Pred or CsA/Aza/Pred triple immunosuppressive regimens for use in clinical kidney transplantation in Northwestern China. European Journal of Clinical Pharmacology 2011;67(6):553-62. [MEDLINE: ] - PubMed
Sperschneider Dilt 1997 {published data only}
    1. Sperschneider H, Wagner C, Korn A, Christians U. Effect of diltiazem on concentration of cyclosporin metabolites in Sandimmune and Neoral treated kidney transplant patients. Medizinische Klinik 1997;92(10):589-96. [MEDLINE: ] - PubMed
    1. Wagner C, Sperschneider H, Korn A, Christians U. Influence of diltiazem on cyclosporine metabolites in renal graft recipients treated with Sandimmune® and Neoral® [abstract no: A3286]. Journal of the American Society of Nephrology 1997;8(Program & Abstracts):707A. [CENTRAL: CN-00509549]
Sperschneider Nifed 1997 {published data only}
    1. Sperschneider H, Wagner C, Korn A, Christians U. Effect of diltiazem on concentration of cyclosporin metabolites in Sandimmune and Neoral treated kidney transplant patients. Medizinische Klinik 1997;92(10):589-96. [MEDLINE: ] - PubMed
    1. Wagner C, Sperschneider H, Korn A, Christians U. Influence of diltiazem on cyclosporine metabolites in renal graft recipients treated with Sandimmune® and Neoral® [abstract no: A3286]. Journal of the American Society of Nephrology 1997;8(Program & Abstracts):707A. [CENTRAL: CN-00509549]
SPIREN 2018 {published data only}2011‐002243‐98
    1. Mortensen L, Thiesson H, Bistrup C, Nielsen F, Halekoh U, Jensen B, et al. The effect of spironolactone on calcineurin inhibitor induced nephrotoxicity [abstract no: A250]. American Journal of Transplantation 2016;16(Suppl 3):486. [EMBASE: 611699692]
    1. Mortensen LA, Bistrup C, Jensen B, Stubbe J, Carlstrom M, Checa A, et al. Treatment with spironolactone for 1 year does not improve nitric oxide metabolism in renal transplant patients [abstract no: SP748]. Nephrology Dialysis Transplantation 2018;33(Suppl 1):i600. [EMBASE: 622606623]
    1. Mortensen LA, Bistrup C, Stubbe J, Carlstrom M, Checa A, Wheelock CE, et al. Effect of spironolactone for 1 yr on endothelial function and vascular inflammation biomarkers in renal transplant recipients. American Journal of Physiology - Renal Physiology 2019;317(3):F529-39. [PMID: ] - PubMed
    1. Mortensen LA, Thiesson HC, Tougaard B, Egfjord M, Fischer ASL, Bistrup C. The effect of spironolactone on calcineurin inhibitor induced nephrotoxicity: a multicenter randomized, double-blind, clinical trial (the SPIREN trial). BMC Nephrology 2018;19(1):105. [MEDLINE: ] - PMC - PubMed
    1. Thangaraj SS, Thiesson HC, Svenningsen P, Stubbe J, Palarasah Y, Bistrup C, et al. Mineralocorticoid receptor blockade with spironolactone has no direct effect on plasma IL-17A and injury markers in urine from kidney transplant patients. American Journal of Physiology - Renal Physiology 2022;322(2):F138-49. [MEDLINE: ] - PubMed
Takahara 2002 {published data only}
    1. Kawaguchi T, Takahara S, Tanaka T, Yazawa K, Hanafusa T, Shi Y, et al. Randomized prospective study of effects of ace inhibitors in renal transplantation: an analysis of safety and efficacy [abstract no: 970]. American Journal of Transplantation 2002;2(Suppl 3):382. [CENTRAL: CN-00415993]
    1. Takahara S, Moriyama T, Kokado Y, Hanafusa T, Yazawa K, Yi S, et al. Randomized prospective study of effects of benazepril in renal transplantation: An analysis of safety and efficacy. Clinical & Experimental Nephrology 2002;6(4):242-7. [EMBASE: 36119641]
Trivedi 2003 {published data only}
    1. Trivedi H, Lal SM. A prospective, randomized, open labeled crossover trial of fosinopril and theophylline in post renal transplant erythrocytosis. Renal Failure 2003;25(1):77-86. [MEDLINE: ] - PubMed
Tylicki 2006 {published data only}
    1. Tylicki L, Biedunkiewicz B, Chamienia A, Wojnarowski K, Zdrojewski Z, Aleksandrowicz E, et al. Renal allograft protection with angiotensin II type 1 receptor antagonists. American Journal of Transplantation 2007;7(1):243-8. [MEDLINE: ] - PubMed
    1. Tylicki L, Biedunkiewicz B, Chamienia A, Wojnarowski K, Zdrojewski Z, Rutkowski B. Randomized placebo-controlled study on the effects of losartan and carvedilol on albuminuria in renal transplant recipients. Transplantation 2006;81(1):52-6. [MEDLINE: ] - PubMed
Tylicki 2017 {published data only}
    1. Tylicki L, Debska-Slizien AM, Lizakowski S, Przybylska M, Heleniak Z, Renke M, et al. Aliskiren reduces albuminuria after kidney transplantation. Acta Biochimica Polonica 2017;64(2):221-6. [MEDLINE: ] - PubMed
    1. Tylicki L, Debska-lizien A, Lisakowski S, Przybylska M, Heleniak Z, Renke M, et al. Aliskiren reduces albuminuria after kidney transplantation [abstract no: FP866]. Nephrology Dialysis Transplantation 2015;30(Suppl 3):iii366. [EMBASE: 72207283] - PubMed
Uchida 2009 {published data only}
    1. Uchida J, Kitamoto K, Machida Y, Iwai T, Morimoto K, Nishikawa N, et al. Low-grade albuminuria reduction with angiotensin II type 1 receptor antagonist in renal transplant recipients [abstract no: P-695]. Transplant International 2009;22(Suppl 2):268.
    1. Uchida J, Machida Y, Iwai T, Iguchi T, Kamada Y, Naganuma T, et al. Low-grade albuminuria reduction with angiotensin II type 1 receptor blocker in renal transplant recipients. Journal of Nephrology 2011;24(4):515-21. [MEDLINE: ] - PubMed
Van den Dorpel 1994 {published data only}
    1. Van den Dorpel MA, Zietse R, Ijzermans JN, Schalekamp MA, Weimar W. Effect of isradipine on cyclosporin A-related hypertension. Blood Pressure 1994;3(Suppl 1):50-3. [MEDLINE: ] - PubMed
    1. Van den Dorpel MA, Zietse R, Ijzermans JN, Wiemar W. Prophylactic isradipine treatment after kidney transplantation: a prospective double-blind placebo-controlled randomized trial. Transplantation International 1994;7(Suppl 1):S270-4. [MEDLINE: ] - PubMed
Van der Schaaf 1995 {published data only}
    1. Schaaf MR, Hene RJ, Floor M, Blankestijn PJ, Koomans HA. Hypertension after renal transplantation. Calcium channel or converting enzyme blockade? Hypertension 1995;25(1):77-81. [MEDLINE: ] - PubMed
Vanrenterghem 1988 {published data only}
    1. Vanrenterghem Y, Waer M, De Keyser P, Roels L, Michielsen P. Controlled trial of the protective effect of dihydroergotoxine (Hydergine) on cyclosporine-associated nephrotoxicity in renal graft recipients. Transplantation Proceedings 1988;20(3 Suppl 3):615-7. [MEDLINE: ] - PubMed
Van Riemsdijk 2000 {published data only}
    1. Riemsdijk IC, Mulder PG, Fijter JW, Bruijn JA, Hooff JP, Hoitsma AJ, et al. Addition of isradipine (Lomir) results in a better renal function after kidney transplantation: a double-blind, randomized, placebo-controlled, multi-center study. Transplantation 2000;70(1):122-6. [MEDLINE: ] - PubMed
Venkat‐Raman 1999 {published data only}
    1. Venkat-Raman G, Feehally J, Coates RA, Elliott HL, Griffin PJ, Olubodun JO, et al. Renal effects of amlodipine in normotensive renal transplant recipients. Nephrology Dialysis Transplantation 1999;14(2):384-8. [MEDLINE: ] - PubMed
    1. Venkat-Raman G, Griffin P, Moore R, Goodship T. Effects of amlodipine on renal function and cyclosporine pharmacokinetics in normotensive renal transplant recipients [abstract]. In: ISN XIII International Congress of Nephrology; 1995 Jul 2-6; Madrid, Spain. 1995:381. [CENTRAL: CN-00509541]
Wagner 1986 {published data only}
    1. Kunzendorf U, Walz G, Brockmoeller J, Neumayer HH, Jochimsen F, Roots I, et al. Effects of diltiazem upon metabolism and immunosuppressive action of cyclosporine in kidney graft recipients. Transplantation 1991;52(2):280-4. [MEDLINE: ] - PubMed
    1. Neumayer HH, Albrecht S, Wagner K. Prevention of delayed graft function in cadaver kidney transplants by diltiazem: a randomised trial [abstract]. Kidney International 1986;1(2):140. [CENTRAL: CN-01657803]
    1. Neumayer HH, Kunzendorf U, Schreiber M. Protective effects of calcium antagonists in human renal transplantation. Kidney International - Supplement 1992;36:S87-93. [MEDLINE: ] - PubMed
    1. Neumayer HH, Kunzendorf U, Schreiber M. Protective effects of diltiazem and the prostazycline analogue iloprost in human renal transplantation. Renal Failure 1992;14(3):289-96. [MEDLINE: ] - PubMed
    1. Neumayer HH, Wagner K. Prevention of delayed graft function in cadaver kidney transplants by diltiazem [abstract]. Kidney International 1987;31(1):465. [CENTRAL: CN-00644227]
Wahlberg 1992 {published data only}
    1. Wahlberg J, Hanas E, Bergstrom C, Fellstrom B, Skarp-Orberg I, Frodin L. Diltiazem treatment with reduced dose of cyclosporine in renal transplant recipients. Transplantation Proceedings 1992;24(1):311-2. [MEDLINE: ] - PubMed
Wei 2002 {published data only}
    1. Wei C, Lin R, Fink JC, Klassen DK, Cangro CB, Drachenburg C, et al. Candesartan attenuates angiotensin II and TGF-beta tissue expression in renal biopsies of patients with chronic allograft nephropathy [abstract no: 48]. American Journal of Transplantation 2002;2(Suppl 3):150.
    1. Wei C, Lin R, Fink JC, Klassen DK, Cangro CB, Papadimitriou JC, et al. Candesartan reduces expression of angiotensin II and TGF-beta and increases DNA repair enzyme in human chronic allograft nephropathy [abstract no: 725]. American Journal of Transplantation 2003;3(Suppl 5):338. [CENTRAL: CN-00448312]
    1. Wei C, Lin R, Fink JC, Klassen DK, Papadimitriou JC, Drachenburg CI, et al. Candesartan reduces DNA damage and increases DNA repair enzyme in renal biopsies of patients with chronic allograft nephropathy [abstract no: SA-FC118]. Journal of the American Society of Nephrology 2002;13(Program & Abstracts):24A. [CENTRAL: CN-00448313]
    1. Wei C, Lin R, Fink JC, Klassen DK, Papadimitriou JC, Drachenburg CI, et al. Reduced expression of angiotensin II and TGF-beta in renal biopsies of patients with chronic allograft nephropathy by candesartan [abstract no: SA-FC117]. Journal of the American Society of Nephrology 2002;13(Program & Abstracts):24A. [CENTRAL: CN-00448314]
    1. Weir MR. Candesartan attenuates angiotensin II and TGF-beta tissue expression in renal biopsies of patients with chronic allograft nephropathy [abstract no: 3447]. In: XIXth International Congress of the Transplantation Society; 2002 Aug 25-30; Miami (FL). 2002. [CENTRAL: CN-00416908]
Weidanz 2005 {published data only}
    1. Becker BN, Jacobson LM, Muehrer RJ, Djamali A, Hullett DA. Angiotensin receptor blockade has significant immunomodulatory effects in chronic allograft nephropathy [abstract no: SA-PO553]. Journal of the American Society of Nephrology 2003;14(Nov):418A. [CENTRAL: CN-00644292]
    1. Becker BN, Jacobson LM, Muehrer RJ, Hullett DA. Chronic type 1 angiotensin II receptor blockade attenuates lymphocyte responsiveness in renal allograft recipients [abstract no: 615]. American Journal of Transplantation 2003;3(Suppl 5):309. [CENTRAL: CN-00444371]
    1. Djamali A, Jacobsen L, Muehrer R, Sprague J, Waller K, McAnulty J, et al. Intragraft oxidative stress and urinary hydrogen peroxide in chronic allograft nephropathy [abstract no: 793]. American Journal of Transplantation 2003;3(Suppl 5):355. [CENTRAL: CN-00445119]
    1. Weidanz JA, Jacobson LM, Muehrer RJ, Djamali A, Hullett DA, Sprague J, et al. ATR blockade reduces IFN-gamma production in lymphocytes in vivo and in vitro. Kidney International 2005;67(6):2134-42. [MEDLINE: ] - PubMed
Wilkie 1993 {published data only}
    1. Wilkie M, Beer J, Dawney A, Raftery MJ, Marsh FP. Cyclosporin nephrotoxicity is not ameliorated by nifedipine [abstract]. Nephrology Dialysis Transplantation 1992;7(7):781-2.
    1. Wilkie ME, Beer JC, Raftery MJ, Dawnay A, Barton C, Marsh FP. Effect of nifedipine on renal haemodynamics and urinary protein excretion in stable renal transplant recipients. Transplantation Proceedings 1993;25(1 Pt 1):612-5. [MEDLINE: ] - PubMed
Wilkie 1994 {published data only}
    1. Wilkie ME, Beer JC, Evans C, Lord RH, Raftery MJ, Marsh FP. A prospective randomized double-blind placebo-controlled trial of oral nifedipine on early renal allograft function [abstract]. In: 12th International Congress of Nephrology; 1993 Jun 13-18; Jerusalem, Israel. 1993:156. [CENTRAL: CN-00644306]
    1. Wilkie ME, Beer JC, Evans C, Lord RH, Raftery MJ, Marsh FP. Prospective trial of oral nifedipine on early renal allograft function [abstract]. Nephrology Dialysis Transplantation 1993;8(9):1053-4. [CENTRAL: CN-00260901] - PubMed
    1. Wilkie ME, Beer JC, Evans SJ, Raftery MJ, Lord RH, Moore R, et al. A double-blind, randomized, placebo-controlled study of nifedipine on early renal allograft function. Nephrology Dialysis Transplantation 1994;9(7):800-4. [MEDLINE: ] - PubMed
Yildiz 2001 {published data only}
    1. Yildiz A, Cine N, Akkaya V, Sahin S, Ismailoglu V, Turk S, et al. Comparison of the effects of enalapril and losartan on posttransplantation erythrocytosis in renal transplant recipients: prospective randomized study. Transplantation 2001;72(3):542-4. [MEDLINE: ] - PubMed
    1. Yildiz A, Ismailoglu V, Erkoc R, Celik AV, Gorcin B, Sever MS, et al. The effect of enalapril and losartan in posttransplant erythrocytosis [abstract]. Nephrology Dialysis Transplantation 1999;14(9):A302. [CENTRAL: CN-00486536]
Zhang 2008 {published data only}
    1. Zhang ZH, Zhang WD, Yao K. Treatment of chronic allograft nephropathy with combination of enalapril and bailing capsule. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi [Chinese Journal of Integrated Traditional & Western Medicine] 2008;28(9):806-9. [MEDLINE: ] - PubMed
Zhu 2009 {published data only}
    1. Zhu X, Chen J, Han F, Cheng M, Xu L, Zhang L, et al. Efficacy and safety of losartan in treatment of hyperuricemia and posttransplantation erythrocytosis: results of a prospective, open, randomized, case-control study. Transplantation Proceedings 2009;41(9):3736-42. [MEDLINE: ] - PubMed

References to studies excluded from this review

Alexander 2005 {published data only}
    1. Alexander JW, Metze TJ, Goodman HR, Greenberg NA, First MR, McIntosh MJ, et al. Transplant success and immunomodulating diets [abstract]. In: XIXth International Congress of the Transplantation Society; 2002 Aug 25-30; Miami, FL. 2002.
    1. Alexander JW, Metze TJ, Goodman HR, McIntosh MJ, Zeng L, Cardi MA, et al. Transplant success and immunomodulating diets [abstract]. American Journal of Transplantation 2003;3(Suppl 5):562.
    1. Alexander JW, Metze TJ, McIntosh MJ, Goodman HR, First MR, Munda R, et al. The influence of immunomodulatory diets on transplant success and complications. Transplantation 2005;79(4):460-5. [MEDLINE: ] - PubMed
    1. Alexander JW, Ofstedal T, Stanley L, Erickson A, Greenberg N, First MR, et al. L-arginine and canola oil improve outcome after renal transplantation [abstract]. In: XVIII International Congress of the Transplantation Society; 2000 Aug 27-Sept 1; Rome, Italy. 2000.
Bourbigot 1990 {published data only}
    1. Bourbigot B, Legendre JM. Calcium blocker before cyclosporin A in kidney recipients [abstract]. Nephrology Dialysis Transplantation 1990;5(8):745. [CENTRAL: CN-00260579]
Christians 1996 {published data only}
    1. Bleck JS, Thiesemann C, Kliem V, Christians U, Hecker H, Repp H, et al. Diltiazem increases blood concentrations of cyclized cyclosporine metabolites resulting in different cyclosporine metabolite patterns in stable male and female renal allograft recipients. British Journal of Clinical Pharmacology 1996;41(6):551-6. [MEDLINE: ] - PMC - PubMed
    1. Christians U, Bleck JS, Lampen A, Bader A, Thiesemann C, Kliem V, et al. Are cytochrome P450 3A enzymes in the small intestine responsible for different cyclosporine metabolite patterns in stable male and female renal allograft recipients after co-administration of diltiazem? Transplantation Proceedings 1996;28(4):2159-61. [MEDLINE: ] - PubMed
Citterio 1996 {published data only}
    1. Citterio F, Serino F, Pozzetto U, Fioravanti P, Caizzi P, Castagneto M. Verapamil improves Sandimmune immunosuppression, reducing acute rejection episodes. Transplantation Proceedings 1996;28(4):2174-6. [MEDLINE: ] - PubMed
Curtis 1992 {published data only}
    1. Curtis JJ, Laskow DA, Jones P. DA1 receptor agonist lowers renal vascular resistance in kidney transplant patients on cyclosporine [abstract]. Journal of the American Society of Nephrology 1992;3(3):855. [CENTRAL: CN-00460601]
Curtis 1993 {published data only}
    1. Curtis JJ, Laskow DA, Jones PA, Julian BA, Gaston RS, Luke RG. Captopril-induced fall in glomerular filtration rate in cyclosporine-treated hypertensive patients. Journal of the American Society of Nephrology 1993;3(9):1570-4. [MEDLINE: ] - PubMed
Dawidson 1989 {published data only}
    1. Dawidson I, Rooth P, Fry WR, Sandor Z, Willms C, Coorpender L, et al. Prevention of acute cyclosporine-induced renal blood flow inhibition and improved immunosuppression with verapamil. Transplantation 1989;48(4):575-80. [MEDLINE: ] - PubMed
Donmez 1999 {published data only}
    1. Donmez A, Karaaslan D, Sekerci S, Akpek E, Karakayali H, Arslan G. The effects of diltiazem and dopamine on early graft function in renal transplant recipients. Transplantation Proceedings 1999;31(8):3305-6. [MEDLINE: ] - PubMed
Duggan 1985 {published data only}
    1. Duggan KA, Macdonald GJ, Charlesworth JA, Pussell BA. Verapamil prevents post-transplant oliguric renal failure. Clinical Nephrology 1985;24(6):289-91. [MEDLINE: ] - PubMed
EPURE 2018 {published data only}2015‐000956‐29
    1. Girerd S, Frimat L, Ducloux D, Le Meur Y, Mariat C, Moulin B, et al. EPURE Transplant (Eplerenone in Patients Undergoing Renal Transplant) study: study protocol for a randomized controlled trial. Trials [Electronic Resource] 2018;19(1):595. [MEDLINE: ] - PMC - PubMed
ESCORT 2013 {published data only}
    1. Seeman T, Dusek J, Simankova N, Vondrak K, Zieg J. ESCORT Trial - Effects of strict control of blood pressure in pediatric renal transplant recipients - 1 year results from a randomized controlled trial [abstract no: O75]. Pediatric Nephrology 2014;29(9):1683. [EMBASE: 71662389]
    1. Seeman T, Dusek J, Simankova N, Vondrak K, Zieg J. ESCORT trial-Effects of strict control of blood pressure in pediatric renal transplant recipients-Final results from a randomized controlled trial [abstract no: FP-S05-2]. Pediatric Nephrology 2016;31(10):1727-8. [EMBASE: 612479399]
    1. Seeman T, Dusek J, Simankova N, Vondrak K, Zieg J. ESCORT trial-effects of strict control of blood pressure in pediatric renal transplant recipients-baseline characteristics of patients from a randomized controlled trial [abstract no: P-SAT456]. Pediatric Nephrology 2013;28(8):1531. [EMBASE: 71127476]
    1. Seeman T, Dusek J, Vondrak K, Simankova N, Zieg J. ESCORT trial-effects of strict control of blood pressure in pediatric renal transplant recipients-2 year results from a randomized controlled trial [abstract no: O-54]. Pediatric Nephrology 2015;30(9):1562-3. [EMBASE: 72033221]
    1. Seeman T, Simankova N, Vondrak K, Zieg J. ESCORT trial-effects of strict control of blood pressure in pediatric renal transplant recipients-final results from a randomized controlled trial [abstract no: P.214]. Pediatric Transplantation 2017;21(Suppl 1):63. [EMBASE: 616240834]
Gabardi 2014 {published data only}
    1. Gabardi S, Grafals M, Conte S, Gilligan H, Simpsom M, Abdi R. A pilot study to evaluate the impact of nebivolol versus metoprolol on quality of life measures in stable renal transplant recipients [abstract no: D2732]. Transplantation 2014;98(Suppl 1):844. [EMBASE: 71546418]
I‐LORD 2012 {published data only}
    1. Yokoyama H, Yamaya H, Okuyama H. Evaluation of irbesartan and losartan on renal protection in renal transplant recipients (I-LORD study) [abstract no: PUB779]. Journal of the American Society of Nephrology 2012;23(Abstract Suppl):1066A.
Kauffman 1980 {published data only}
    1. Kauffman HM, Adams MB, Hebert LA, Walczak PM. Platelet inhibitors in human renal homotransplantation: randomized comparison of aspirin versus dipyridamole. Transplantation Proceedings 1980;12(2):311-4. [MEDLINE: ] - PubMed
Kelly 2001 {published data only}
    1. Kelly BS, Alexander JW, Dreyer D, Greenberg NA, Erickson A, Whiting JF, et al. Oral arginine improves blood pressure in renal transplant and hemodialysis patients. Jpen - Journal of Parenteral & Enteral Nutrition 2001;25(4):194-202. [MEDLINE: ] - PubMed
Koller 1988 {published data only}
    1. Koller J, Wieser C, Kornberger R, Furtwangler W, Konigsrainer A, Margreiter R. Does systemic pretreatment with verapamil prevent acute tubular necrosis after renal transplantation? Transplantation Proceedings 1988;20(5):905-6. [MEDLINE: ] - PubMed
Konstadinidou 1997 {published data only}
    1. Konstadinidou I, Boletis J. Long term effects of two ace inhibitors on erythropoiesis in renal transplantation [abstract]. Nephrology Dialysis Transplantation 1997;12(9):A227. [CENTRAL: CN-00261433]
Kumar 2017 {published data only}
    1. Kumar V, Arya VK, Sondekoppam RV, Arora S, Minz M, Garg R, et al. Effect of discontinuing morning dose of antihypertensive for renal transplant surgery on haemodynamic and early graft functioning: A prospective, double-blind, randomised study. Indian Journal of Anaesthesia 2017;61(2):150-6. [MEDLINE: ] - PMC - PubMed
Lal 1999 {published data only}
    1. Lal SM, Reams GP, Gupta N, Van Stone JC, Bauer JH, Ross G. The effect of a single oral dose of a calcium-channel blocker on renal function in kidney transplant recipients. Advances in Therapy 1999;16(3):113-9. [EMBASE: 29502625]
Leeman 1993 {published data only}
    1. Leeman M, Vereerstraeten P, Uytdenhoef M, Degaute JP. Systemic and renal hemodynamic responses to carvedilol and metoprolol in hypertensive renal transplant patients. Journal of Cardiovascular Pharmacology 1993;22(5):706-10. [MEDLINE: ] - PubMed
Lin 2008 {published data only}
    1. Lin S, Chen Y, Chiang W, Wu K, Tsai T. Add-on pentoxifylline attenuated residual proteinuria in patients of moderate to advanced chronic kidney disease receiving maximized losartan treatment [abstract no: F-FC090]. Journal of the American Society of Nephrology 2006;17:56A. [CENTRAL: CN-00653766]
    1. Lin SL, Chen YM, Chiang WC, Wu KD, Tsai TJ. Effect of pentoxifylline in addition to losartan on proteinuria and GFR in CKD: a 12-month randomized trial. American Journal of Kidney Diseases 2008;52(3):464-74. [MEDLINE: ] - PubMed
Madsen 1995 {published data only}
    1. Madsen JK, Kornerup HJ, Pedersen EB. Effect of felodipine on renal haemodynamics and tubular sodium handling after single-dose cyclosporin infusion in renal transplant recipients treated with azathioprine and prednisolone. Scandinavian Journal of Clinical & Laboratory Investigation 1995;55(7):625-33. [MEDLINE: ] - PubMed
    1. Madsen JK, Zachariae H, Pedersen EB. Beneficial effects of felodipine on renal hemodynamics, tubular sodium handling, and blood pressure in cyclosporine-treated dermatological patients [abstract]. In: ISN XIII International Congress of Nephrology; 1995 Jul 2-6; Madrid, Spain. 1995:36. [CENTRAL: CN-00550639] - PubMed
McCune 2005 {published data only}
    1. McCune TR, Wombolt DG, Whelan TV, Thacker LR, Colonna JO. Vasodilatation vs. immunotherapy to prevent delayed graft function: delayed graft function as an indication of immune activation. International Immunopharmacology 2005;5(1):85-92. [MEDLINE: ] - PubMed
Miura 2019 {published data only}
    1. Miura Y, Noguchi H, Okabe Y, Masutani K, Tokunaga S, Nakamura M. Effects of telmisartan and candesartan on the metabolism of lipids and glucose in kidney transplant patients: a prospective, randomized crossover study. Transplantation Direct 2019;5(2):e423. [MEDLINE: ] - PMC - PubMed
Morales‐Buenrostro 2019 {published data only}
    1. Bobadilla NA, Morales-Buenrostro LE, Ortega-Trejo JA, Perez-Villalva R, Marino L, Juarez H, et al. Randomized controlled trial of spironolactone effect in kidney transplant recipients of living donors [abstract no: A91]. American Journal of Transplantation 2019;19(Suppl 3):623. [EMBASE: 628454418]
    1. Morales-Buenrostro LE, Ortega-Trejo JA, Perez-Villalva R, Marino LA, Gonzalez-Bobadilla Y, Juarez H, et al. Spironolactone reduces oxidative stress in living donor kidney transplantation: a randomized controlled trial. American Journal of Physiology - Renal Physiology 2019;317(3):F519-28. [MEDLINE: ] - PubMed
Nanni 2000 {published data only}
    1. Nanni G, Panocchia N, Tacchino R, Foco M, Piccioni E, Castagneto M. Increased incidence of infection in verapamil-treated kidney transplant recipients. Transplantation Proceedings 2000;32(3):551-3. [MEDLINE: ] - PubMed
NCT00308425 {published data only}
    1. NCT00308425. Safety and efficacy of enteric-coated mycophenolate sodium (EC-MPS) plus valsartan in patients with kidney transplants (MYTHOS) [Effect of enteric-coated mycophenolate sodium (EC-MPS) plus valsartan as part of intensified multi-factorial intervention compared to EC-MPS plus standard practice of care on development of transplant nephropathy in cadaver donor kidney recipients given basiliximab, cyclosporine microemulsion (CsA-ME) and short-term steroids: a 12-month, prospective, randomized, open-label multicentre study (MYTHOS)]. www.clinicaltrials.gov/ct2/show/record/NCT00308425 (first received 29 March 2006).
NCT01007994 {published data only}
    1. NCT01007994. Reduction of nocturnal hypertension in pediatric renal transplant recipients. www.clinicaltrials.gov/ct2/show/NCT01007994 (first received 5 November 2009).
NCT01224860 {published data only}2008‐000822‐38
    1. NCT01224860. Telmisartan versus losartan in kidney transplantation (COSTANT) [A prospective, randomized, open label blinded end point (probe), crossover study to compare the effects of telmisartan and losartan on metabolic profile of renal transplant patients]. www.clinicaltrials.gov/ct2/show/NCT01224860 (first received 20 October 2010).
NCT02030314 {published data only}
    1. NCT02030314. The management of resistant hypertension in kidney transplant patients using chlorthalidone. www.clinicaltrials.gov/ct2/show/NCT02030314 (first received 8 January 2014).
Neumayer 1988 {published data only}
    1. Neumayer HH, Schreiber M, Wagner K. Prevention of delayed graft function by diltiazem and iloprost. Transplantation Proceedings 1989;21(1 Pt 2):1221-4. [MEDLINE: ] - PubMed
    1. Neumayer HH, Schreiber M, Wagner K. Prevention of delayed graft function in cadaver kidney transplants by the calcium antagonist diltiazem and the prostacyclin analogue Iloprost: outcome of a prospective randomised clinical trial [abstract]. Nephrology Dialysis Transplantation 1988;3(4):572-3. [CENTRAL: CN-00260409] - PubMed
    1. Neumayer HH, Schreiber M, Wagner K. Prevention of delayed graft function in cadaveric kidney transplants by the calcium antagonist diltiazem and the prostacyclin-analogue iloprost--outcome of a prospective randomized clinical trial. Progress in Clinical & Biological Research 1989;301:289-95. [MEDLINE: ] - PubMed
Niyamathullah 1989 {published data only}
    1. Niyamathullah MM, Hariharan S, Jacob CK, Pandey AP, Gopalakrishnan G, Date A, et al. A controlled trial of dipyridamole as an immunomodulator in renal allograft recipients. Transplantation 1989;47(6):1071-2. [MEDLINE: ] - PubMed
Noel 1997 {published data only}
    1. Noel C, Copin MC, Hazzan M, Labalette M, Susen S, Lelievre G, et al. Immunomodulatory effect of pentoxifylline during human allograft rejection: involvement of tumor necrosis factor-alpha and adhesion molecules. Transplantation 2000;69(6):1102-7. [MEDLINE: ] - PubMed
    1. Noel C, Hazzan M, Coppin MC, Codaccioni MX, Pruvot FR, Labalette M, et al. A randomized controlled trial of pentoxifylline for the prevention of delayed graft function in cadaveric kidney graft. Clinical Transplantation 1997;11(3):169-73. [MEDLINE: ] - PubMed
    1. Noel C, Hazzan M, Labalette M, Coppin MC, Jude B, Dessaint JP, et al. Improvement in the outcome of rejection with pentoxifylline in renal transplantation: a randomized controlled trial. Transplantation 1998;65(3):385-9. [MEDLINE: ] - PubMed
    1. Susen S, Hazzan M, Labalette M, Zawadzki C, Dessaint JP, Lelievre G, et al. Pentoxifylline prevents upregulation of monocyte tissue factor in renal transplant recipients undergoing post-graft complications. Thrombosis & Haemostasis 2000;84(5):764-9. [MEDLINE: ] - PubMed
Ojeda‐Cervantes 2013 {published data only}
    1. Ojeda-Cervantes M, Barrera-Chimal J, Alberu J, Perez-Villalva R, Morales-Buenrostro LE, Bobadilla NA. Mineralocorticoid receptor blockade reduced oxidative stress in renal transplant recipients: A double-blind, randomized pilot study. American Journal of Nephrology 2013;37(5):481-90. [EMBASE: 23635604] - PubMed
    1. Ojeda-Cerventes M, Barrera-Chimal J, Bobadilla-Sandoval NA, Morales-Buenrostro E. Effect of mineralocorticoid receptor blockade on the phenomenon of ischemia reperfusion in renal transplantation: a pilot study [abstract no: 1157]. American Journal of Transplantation 2012;12(Suppl 3):369. [EMBASE: 70747124]
Okuno 1997 {published data only}
    1. Okuno Y, Mashimo T, Takashina M, Hagihira S, Inagaki Y, Mori T, et al. Hemodynamic effects of amrinone combined with dopamine in patients undergoing living renal transplantation. Masui - Japanese Journal of Anesthesiology 1997;46(1):87-94. [MEDLINE: ] - PubMed
Ploeg 1990 {published data only}
    1. Ploeg RJ, Bockel JH, Langendijk PT, Groenewegen M, Woude FJ, Persijn GG, et al. Effect of preservation solution on results of cadaveric kidney transplantation. The European Multicentre Study Group. Lancet 1992;340(8812):129-37. [MEDLINE: ] - PubMed
    1. Ploeg RJ. Kidney preservation with the UW and Euro-Collins solutions. A preliminary report of a clinical comparison. Transplantation 1990;49(2):281-4. [MEDLINE: ] - PubMed
    1. Ploeg RJ. Preliminary results of the European Multicenter Trial of UW and Euro-Collins solutions in kidney transplantation. The Study Group. Transplantation Proceedings 1990;22(5):2213-5. [MEDLINE: ] - PubMed
    1. Rutten FF, Ploeg RJ, McDonnell J, Cohen B. The cost-effectiveness of preservation with UW and EC solution for use in cadaveric kidney transplantation in the case of single kidney donors. Transplantation 1993;56(4):854-8. [MEDLINE: ] - PubMed
    1. Rutten FF, Ploeg RJ, McDonnell J. Kidney preservation with University of Wisconsin or Euro-Collins solution? An economic analysis. Transplantation Proceedings 1993;25(1 Pt 2):1586-7. [MEDLINE: ] - PubMed
Po 1993 {published data only}
    1. Po C, Raja R, Morris M, Badosa F. Effect of varying doses of enalapril on post-transplant erythocytosis [abstract]. Journal of the American Society of Nephrology 1993;4(Program & Abstracts):956. [CENTRAL: CN-00485445]
Polyak 1998 {published data only}
    1. Polyak MM, Arrington BO, Stubenbord WT, Kapur S, Kinkhabwala M. Prostaglandin E1 influences pulsatile preservation characteristics and early graft function in expanded criteria donor kidneys. Journal of Surgical Research 1999;85(1):17-25. [MEDLINE: ] - PubMed
    1. Polyak MM, Arrington BO, Stubenbord WT, Kinkhabwala M. Prostaglandin E1 improves pulsatile preservation characteristics and early graft function in expanded criteria donor kidneys. ASAIO Journal 1998;44(5):M610-2. [MEDLINE: ] - PubMed
Porras 1992 {published data only}
    1. Porras I, Gonzalez-Posada JM, Losada M, Jordano A, Lorenzo V, Gonzalez-Miranda F, et al. A multivariate analysis of the risk factors for posttransplant renal failure: beneficial effect of a flush solution with mannitol. Transplantation Proceedings 1992;24(1):52-3. [MEDLINE: ] - PubMed
Puig 1991 {published data only}
    1. Puig JM, Lloveras J, Oliveras A, Costa A, Aubia J, Masramon J. Usefulness of diltiazem in reducing the incidence of acute tubular necrosis in Euro-Collins-preserved cadaveric renal grafts. Transplantation Proceedings 1991;23(5):2368-9. [MEDLINE: ] - PubMed
Richards 1989 {published data only}
    1. Richards KF, Belnap LP, Rees WV, Stevens LE. Mannitol reduces ATN in cadaveric allografts. Transplantation Proceedings 1989;21(1 Pt 2):1228-9. [MEDLINE: ] - PubMed
Rogan 2000 {published data only}
    1. Rogan JW, Lyszkiewicz DA, Blowey D, Khattak S, Arbus GS, Koren G. A randomized prospective crossover trial of amlodipine in pediatric hypertension. Pediatric Nephrology 2000;14(12):1083-7. [MEDLINE: ] - PubMed
Rondeau 1992 {published data only}
    1. Rondeau E, Paillard F, Peraldi MN, Violet I, Tasse S, Dussaule JC, et al. Role of the renin-angiotensin system on the renal functional reserve in renal transplant recipients. Kidney International 1993;44(1):165-72. [MEDLINE: ] - PubMed
    1. Rondeau E, Paillard F, Violet I, Tasse S, Ardaillou R, Sraer JD. Renal functional reserve in renal transplant recipients [abstract]. Nephrology Dialysis Transplantation 1992;7(7):779. [CENTRAL: CN-00260743]
Roy 1989 {published data only}
    1. Roy LF, East DS, Browning FM, Shaw D, Ogilvie RI, Cardella C, et al. Short-term effects of calcium antagonists on hemodynamics and cyclosporine pharmacokinetics in heart-transplant and kidney-transplant patients. Clinical Pharmacology & Therapeutics 1989;46(6):657-67. [MEDLINE: ] - PubMed
Santos 2015 {published data only}
    1. Santos AHJr, Casey MJ, Bucci CM, Rehman S, Segal MS. Nebivolol effects on nitric oxide levels, blood pressure, and renal function in kidney transplant patients. Journal of Clinical Hypertension 2016;18(8):741-9. [MEDLINE: ] - PMC - PubMed
Schott 1994 {published data only}
    1. Schott G, Prom T. Intraoperative cortical PO2 measurement in kidney transplantation. The effect of the calcium antagonist diltiazem [Intraoperative kortikale PO2-Messungen bei Nierentransplantation. Einfluss des Kalziumantagonisten Diltiazem]. Urologe (Ausgabe A) 1994;33(5):415-21. [MEDLINE: ] - PubMed
Sethna 2017 {published data only}
    1. Sethna CB, Gurusinghe S, Frank R, Infante L, Meyers KE. Reduction of nocturnal hypertension in pediatric renal transplant recipients [abstract no: FR-PO544]. Journal of the American Society of Nephrology 2017;28(Abstract Suppl):543. [EMBASE: 633702947]
Sethna 2020 {published data only}
    1. Sethna CB, Grossman LG, Dhanantwari P, Gurusinghe S, Laney N, Frank R, et al. Restoration of nocturnal blood pressure dip and reduction of nocturnal blood pressure with evening anti-hypertensive medication administration in pediatric kidney transplant recipients: a pilot randomized clinical trial. Pediatric Transplantation 2020;24(8):e13854. [MEDLINE: ] - PubMed
Sobh 1989 {published data only}
    1. Sobh MA, Shehab el-Din AB, Moustafa FE, el Far MA, Hussein ME, Gad HM, et al. A prospective randomized study of the protective effect of verapamil on ischemic renal injury in renal allotransplants. Transplantation Proceedings 1989;21(1 Pt 2):1230-2. [MEDLINE: ] - PubMed
Sonzogni 1995 {published data only}
    1. Sonzogni G, Perico N, Gaspari F, Amuchastegui CS, Ruggenenti P. Effect of calcium-channel blockade on renal hemodynamics and cyclosporine (CSA) pharmacokinetcis in randomized double-blind dose-response study in stable renal allograft recipients [abstract no: 1120]. Journal of the American Society of Nephrology 1995;6(3):1116. [CENTRAL: CN-00485960]
Sorensen 1991 {published data only}
    1. Sorensen SS, Skovbon H. Renal haemodynamic and tubular effects of felodipine in cyclosporin-treated renal transplant recipients [abstract]. Nephrology Dialysis Transplantation 1991;6(10):833. [CENTRAL: CN-00260665] - PubMed
Sorensen 1992 {published data only}
    1. Pedersen EB, Madsen JK, Sorensen SS, Zachariae H. Improvement in renal function by felodipine during cyclosporine treatment in acute and short-term studies. Kidney International - Supplement 1996;55:S94-6. [MEDLINE: ] - PubMed
    1. Pedersen EB, Sorensen SS, Eiskjaer H, Skovbon H, Thomsen K. Interaction between cyclosporine and felodipine in renal transplant recipients. Kidney International - Supplement 1992;36:S82-6. [MEDLINE: ] - PubMed
    1. Sorensen SS, Skovbon H, Eiskjaer H, Thomsen K, Pedersen EB. Effect of felodipine on renal haemodynamics and tubular sodium handling in cyclosporin-treated renal transplant recipients. Nephrology Dialysis Transplantation 1992;7(1):69-78. [MEDLINE: ] - PubMed
Spieker 1991 {published data only}
    1. Spieker C, Zidek W, Barenbrock M, Sprakel B, Buchholz B, Rahn KH. Cardiovascular side effects after renal allograft rejection therapy with Orthoclone: prevention with nitrendipine. Journal of Cardiovascular Pharmacology 1991;18 Suppl 1:S79-81. [MEDLINE: ] - PubMed
Spieker 1993 {published data only}
    1. Spieker C, Barenbrock M, Hoeks AH, Zidek W, Rahn K. Effects of ace inhibitors and beta-blockers on arterial compliance [abstract]. Journal of the American Society of Nephrology 1993;4(Program & Abstracts):540. [CENTRAL: CN-00485973]
Susomboon 2022 {published data only}
    1. Susomboon T, Kunlamas Y, Vadcharavivad S, Vongwiwatana A. The effect of the very low dosage diltiazem on tacrolimus exposure very early after kidney transplantation: a randomized controlled trial. Scientific Reports 2022;12(1):14247. [PMID: ] - PMC - PubMed
Tenschert 1991 {published data only}
    1. Tenschert W, Harfmann P, Meyer-Moldenhauer WH, Arndt R, Klosterhalfen H. Kidney protective effect of diltiazem after renal transplantation with long cold ischemia time and triple-drug immunosuppression. Transplantation Proceedings 1991;23(1 Pt 2):1334-5. [MEDLINE: ] - PubMed
Venkat‐Raman 1998 {published data only}
    1. Venkat-Raman G, Feehally J, Elliott HL, Griffin P, Moore RJ, Olubodun JO, et al. Renal and haemodynamic effects of amlodipine and nifedipine in hypertensive renal transplant recipients. Nephrology Dialysis Transplantation 1998;13(10):2612-6. [MEDLINE: ] - PubMed
Wadei 2014 {published data only}
    1. Wadei H, Thomas C, Kaplan J, Crook J, Phail AM, Mai ML, et al. Effect of bedtime BP medication use on day-night BP change, GFR and echocardiographic findings in kidney transplant recipients [abstract]. Journal of the American Society of Hypertension 2014;8(4 Suppl 1):e100-1. [EMBASE: 71500650]
Wanitchanont 2014 {published data only}
    1. Wanitchanont A, Somparn P, Vadcharavivad S, Chancharoenthana W, Townamchai N, Praditpornsilpa K, et al. Effects of atorvastatin on the pharmacokinetics of everolimus among kidney transplant recipients. Transplantation Proceedings 2014;46(2):418-21. [MEDLINE: ] - PubMed
Wlodarczyk 2000 {published data only}
    1. Wlodarczyk Z, Oko A, Glyda M, Karczewski M, Idasiak-Piechocka I, Czekalski S. Effects of pentoxifylline treatment on delayed graft function in cadaveric kidney recipients. Transplantation Proceedings 2000;32(6):1382-3. [MEDLINE: ] - PubMed
Yildiz 1999 {published data only}
    1. Yildiz A, Sever MS, Turkmen A, Ecder T, Ecder T, Turk S, et al. The interaction between cyclosporine A and verapamil, felodipine and isradipine [abstract]. Nephrology Dialysis Transplantation 1997;12(9):A265.
    1. Yildiz A, Sever MS, Turkmen A, Ecder T, Turk S, Akkaya V, Ark E. Interaction between cyclosporine A and verapamil, felodipine, and isradipine. Nephron 1999;91(1):117-8. [PMID: ] - PubMed
    1. Yildiz A, Sever MS, Turkmen A, Ecder T, Turk S, Akkaya V, et al. The interaction between cyclosporine A and verapamil, felodipine and isradipine [abstract]. Nephrology Dialysis Transplantation 1997;12(9):A217. [CENTRAL: CN-00486537] - PubMed
Zhang 2005 {published data only}
    1. Zhang Y, Guan D, Xia C, Han Z, Xu J, Gao J, et al. Clinical study on Lipo PGE, inhibiting platelets activation in acute rejection after kidney transplantation [abstract]. American Journal of Transplantation 2004;4(Suppl 8):163.
    1. Zhang Y, Guan DL, Xia CQ, Han ZY, Xu JJ, Gao JZ, et al. Clinical study of Lipo PGE1-inhibiting platelet activation in acute rejection after kidney transplantation. Transplantation Proceedings 2005;37(10):4208-10. [MEDLINE: ] - PubMed
Zomorrodi 2017 {published data only}
    1. Zomorrodi A, Mohammadipoor Anvari H, Kakaei F, Solymanzadeh F, Khanlari E, Bagheri A. Bolus injection versus infusion of furosemide in kidney transplantation: a randomized clinical trial. Urology Journal 2017;14(2):3013-7. [MEDLINE: ] - PubMed

References to studies awaiting assessment

Mortensen 2024 {published data only}
    1. Mortensen LA, Jespersen B, Helligsoe AS, Tougaard B, Cibulskyte-Ninkovic D, Egfjord M, et al. Effect of spironolactone on kidney function in kidney transplant recipients (the SPIREN trial): a randomized placebo-controlled clinical trial. Clinical Journal of the American Society of Nephrology: CJASN 2024;19(6):755‐66. [DOI: 10.2215/CJN.0000000000000439] [PMID: ] - DOI - PMC - PubMed
NCT00140907 {published data only}
    1. NCT00140907. ALLOGRAFT, a study to evaluate the renal protective effects of losartan [A double-blind, randomized, placebo controlled study to evaluate the renal protective effects of losartan in patients with renal transplant]. www.clinicaltrials.gov/ct2/show/NCT00140907 (first received 1 September 2005).

References to ongoing studies

NCT04450953 {published data only}
    1. NCT04450953. The effect of eplerenone on the evolution of vasculopathy in renal transplant patients (EVATRAN) [A randomized crossover clinical trial regarding the blockage of the mineralocorticoid receptor using eplerenone on the evolution of arterial stiffness in kidney patients one year after transplant]. www.clinicaltrials.gov/ct2/show/NCT04450953 (first received 30 June 2020).

Additional references

Aftab 2013
    1. Aftab W, Varadarajan P, Rasool S, Kore A, Pai RG. Beta and angiotensin blockades are associated with improved 10-year survival in renal transplant recipients. Journal of the American Heart Association 2013;2(1):e000091. [PMID: ] - PMC - PubMed
Arias‐Rodriguez 2015
    1. Arias-Rodrıguez M, Fernandez-Fresnedo G, Campistol JM, Marin R, Franco A, Gomez E, et al. Prevalence and clinical characteristics of renal transplant patients with true resistant hypertension. Journal of Hypertension 2015;33(5):1074–81. [PMID: ] - PubMed
Axelrod 2018
    1. Axelrod DA, Schnitzler MA, Xiao H, Irish W, Tuttle-Newhall E, Chang S, et al. An economic assessment of contemporary kidney transplant practice. American Journal of Transplantation 2018;18(5):1168-76. [DOI: 10.1111/ajt.14702] [PMID: ] - DOI - PubMed
Barama 2008
    1. Barama AA. Mechanisms and management of proteinuria in kidney transplant patients. Drugs 2008;68 Suppl 1:33-9. [MEDLINE: ] - PubMed
Baroletti 2003
    1. Baroletti SA, Gabardi S, Magee CC, Milford EL. Calcium channel blockers as the treatment of choice for hypertension in renal transplant recipients: fact or fiction. Pharmacotherapy 2003;23(6):788-801. [MEDLINE: ] - PubMed
Carpenter 2014
    1. Carpenter MA, John A, Weir MR, Smith SR, Hunsicker L, Kasiske BL, et al. BP, cardiovascular disease, and death in the Folic Acid for Vascular Outcome Reduction in Transplantation trial. Journal of American Society of Nephrology 2014;25(7):1564-73. [PMID: ] - PMC - PubMed
Coleman 2020
    1. Coleman CI, Weeda ER, Kharat A, Bookhart B, Baker WL. Impact of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers on renal and mortality outcomes in people with Type 2 diabetes and proteinuria. Diabetic Medicine 2020;37(1):44-52. [PMID: ] - PubMed
Cordonnier 1999
    1. Cordonnier DJ, Pinel N, Barro C, Maynard M, Zaoui P, Halimi S, et al. Expansion of cortical interstitium is limited by converting enzyme inhibition in type 2 diabetic patients with glomerulosclerosis. Journal of the American Society of Nephrology 1999;10(6):1253-63. [PMID: ] - PubMed
GRADE 2008
    1. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336(7650):924-6. [MEDLINE: ] - PMC - PubMed
GRADE 2011
    1. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. Journal of Clinical Epidemiology 2011;64(4):383-94. [MEDLINE: ] - PubMed
Halimi 2017
    1. Halimi JM, Persu A, Sarafidis PA, Burnier M, Abramowicz D, Sautenet B, et al. Optimizing hypertension management in renal transplantation: a call to action [Erratum in: J Hypertens. 2019 Aug;37(8):1734]. Journal of Hypertension 2017;35(12):2335-8. [PMID: ] - PubMed
Higgins 2003
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327(7414):557-60. [MEDLINE: ] - PMC - PubMed
Higgins 2022
    1. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook.
Hillebrand 2009
    1. Hillebrand U, Suwelack BM, Loley K, Lang D, Reuter S, Amler S, et al. Blood pressure, antihypertensive treatment, and graft survival in kidney transplant patients. Transplant International 2009;22(11):1073-80. [PMID: ] - PubMed
Hiremath 2017
    1. Hiremath S, Fergusson DA, Fergusson N, Bennett A, Knoll GA. Renin-angiotensin system blockade and long-term clinical outcomes in kidney transplant recipients: a meta-analysis of randomized controlled trials. American Journal of Kidney Diseases 2017;69(1):78-86. [PMID: ] - PubMed
Kallistratos 2014
    1. Kallistratos MS, Poulimenos LE, Manolis AJ. Vasodilator beta-blockers: a different class of antihypertensive agents? Future Cardiology 2014;10(6):669-71. [PMID: ] - PubMed
Kasiske 2003
    1. Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ. Diabetes mellitus after kidney transplantation in the United States. American Journal of Transplantation 2003;3(2):178-85. [MEDLINE: ] - PubMed
KDOQI 2007
    1. Kidney Disease Outcomes Quality Initiative (K/DOQI). KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. American Journal of Kidney Diseases 2007;49(2 Suppl 2):S12-5. [MEDLINE: ] - PubMed
Laurent 2017
    1. Laurent S. Antihypertensive drugs. Pharmacological Research 2017;124:116–25. [PMID: ] - PubMed
Lee 2022
    1. Lee YH, Kim JS, Song SH, Song SH, Shin HS, Yang J, et al. Impact of donor hypertension on graft survival and function in living and deceased donor kidney transplantation: a nationwide prospective cohort study. Journal of Hypertension 2022;40(11):2200-9. [PMID: ] - PubMed
Levin 2013
    1. Levin A, Stevens PE. Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney International 2013;85(1):49–61. [DOI: 10.1038/ki.2013.444] [PMID: ] - DOI - PubMed
Maione 2011
    1. Maione A, Navaneethan SD, Graziano G, Mitchell R, Johnson D, Mann JF, et al. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and combined therapy in patients with micro- and macroalbuminuria and other cardiovascular risk factors: a systematic review of randomized controlled trials. Nephrology Dialysis Transplantation 2011;26(9):2827-47. [PMID: ] - PubMed
McCullough 2019
    1. McCullough KP, Morgenstern H, Saran R, Herman WH, Robinson BM. Projecting ESRD Incidence and Prevalence in the United States through 2030. Journal of the American Society of Nephrology 2019;30(1):127-35. [DOI: 10.1681/ASN.2018050531] [PMID: ] - DOI - PMC - PubMed
McMurray 2014
    1. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. New England Journal of Medicine 2014;371(11):993. [PMID: ] - PubMed
Nachawati 2023
    1. Nachawati D, Patel JB. Alpha-Blockers. [Updated 2023 Jul 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. www.ncbi.nlm.nih.gov/books/NBK556066/. - PubMed
Nicholls 2006
    1. Nicholls K. The CARI guidelines. Prevention of progression of kidney disease. ACE inhibitor treatment in diabetic nephropathy. Nephrology 2006;11(Suppl 1):S79-91. [MEDLINE: ] - PubMed
Opelz 2005
    1. Opelz G, Dohler B. Improved long-term outcomes after renal transplantation associated with blood pressure control. American Journal of Transplantation 2005;5(11):2725-31. [PMID: ] - PubMed
Opelz 2014
    1. Opelz G, Dohler B. Cardiovascular death in kidney recipients treated with renin-angiotensin system blockers. Transplantation 2014;97(3):310-5. [PMID: ] - PubMed
Perez 2009
    1. Perez MI, Musini VM, Wright JM. Effect of early treatment with anti-hypertensive drugs on short and long-term mortality in patients with an acute cardiovascular event. Cochrane Database of Systematic Reviews 2009, Issue 4. Art. No: CD006743. [DOI: 10.1002/14651858.CD006743.pub2] - DOI - PubMed
Pilmore 2010
    1. Pilmore H, Dent H, Chang S, McDonald SP, Chadban SJ. Reduction in cardiovascular death after kidney transplantation. Transplantation 2010;89(7):851-7. [PMID: ] - PubMed
Pisano 2020
    1. Pisano A, Bolignano D, Mallamaci F, D’Arrigo G, Halimi JM, Persu A, et al. Comparative effectiveness of different antihypertensive agents in kidney transplantation: a systematic review and meta-analysis. Nephrology Dialysis Transplantation 2020;35(5):878–87. [PMID: ] - PubMed
Ponticelli 2011
    1. Ponticelli C, Cucchiari D, Graziani G. Hypertension in kidney transplant recipients. Transplant International 2011;24(6):523-33. [PMID: ] - PubMed
Ram 2007
    1. Ram CV. Direct renin inhibitors: a new approach to antihypertensive drug treatment. Journal of Clinical Hypertension 2007;9(8):615-21. [PMID: ] - PMC - PubMed
Regulski 2015
    1. Regulski M, Regulska K, Stanisz BJ, Murias M, Gieremek P, Wzgarda A, et al. Chemistry and pharmacology of angiotensin-converting enzyme inhibitors. Current Pharmaceutical Design 2015;21(13):1764-75. [PMID: ] - PubMed
Schünemann 2022a
    1. Schünemann HJ, Higgins JP, Vist GE, Glasziou P, Akl EA, Skoetz N, et al. Chapter 14: Completing ‘Summary of findings’ tables and grading the certainty of the evidence. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook.
Schünemann 2022b
    1. Schünemann HJ, Vist GE, Higgins JP, Santesso N, Deeks JJ, Glasziou P, et al. Chapter 15: Interpreting results and drawing conclusions. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook.
Sica 2007
    1. Sica DA, Moser M. Chapter 18 - Diuretic therapy in cardiovascular disease. In: Black HR, Elliot WJ, editors(s). Hypertension: A companion to Braunwald’s Heart Disease. 3rd edition. Philadelphia: W.B. Saunders, 2007. [ISBN: 978-1-4160-3053-9]
Sica 2015
    1. Sica DA. Mineralocorticoid receptor antagonists for treatment of hypertension and heart failure. Methodist DeBakey Cardiovascular Journal 2015;11(4):235-9. [PMID: ] - PMC - PubMed
SONG 2017
    1. SONG Initiative. The SONG Handbook Version1.0. www.songinitiative.org/reports-and-publications (accessed 20 November 2020) 2020.
Sorensen 2016
    1. Sorensen VR, Heaf J, Wehberg S, Sorensen SS. Survival benefit in renal transplantation despite high comorbidity. Transplantation 2016;100(10):2160-7. [DOI: 10.1097/TP.0000000000001002] [PMID: ] - DOI - PMC - PubMed
Srivastava 2020
    1. Srivastava SP, Goodwin JE, Kanasaki K, Koya D. Inhibition of angiotensin-converting enzyme ameliorates renal fibrosis by mitigating DPP-4 level and restoring antifibrotic MicroRNAs. Genes (Basel) 2020;11(2):211. [PMID: ] - PMC - PubMed
Tantisattamo 2020
    1. Tantisattamo E, Molnar MZ, Ho BT, Reddy UG, Dafoe DC, Ichii H, et al. Approach and management of hypertension after kidney transplantation. Frontiers in Medicine 2020;7:229. [PMID: ] - PMC - PubMed
Thomas 2014
    1. Thomas B, Wulf S, Blosser C, Dick A, Murray C, Naghavi M. Incidence and prevalence of renal transplantation throughout the world: an analysis of the change in renal transplantation rates between years 1990 and 2010 [abstract no: D2526]. Transplantation 2014;98(Suppl 1):643. [EMBASE: 71545716]
Thompson 2002
    1. Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine 2002;21(11):1559-73. [MEDLINE: ] - PubMed
Tong 2017
    1. Tong A, Gill J, Budde K, Marson L, Reese PP, Rosenbloom D, et al. Toward establishing core outcome domains for trials in kidney transplantation: report of the standardized outcomes in nephrology- Kidney transplantation consensus workshops. Transplantation 2017;101(8):1887-96. [PMID: ] - PMC - PubMed
USRDS 2020
    1. United States Renal Data System: NIDDK. 2020 USRDS Annual Data Report: End Stage Renal Disease. https://usrds-adr.niddk.nih.gov/2020/end-stage-renal-disease (date accessed: 26 June 2024).
Weir 2015
    1. Weir MR, Burgess ED, Cooper JE, Fenves AZ, Goldsmith D, McKay D, et al. Assessment and management of hypertension in transplant patients. Journal of the American Society of Nephrology 2015;26(6):1248-60. [PMID: ] - PMC - PubMed
Zamponi 2015
    1. Zamponi GW, Striessnig J, Koschak A Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacological Reviews 2015;67(4):821-70. [PMID: ] - PMC - PubMed
Zannad 2011
    1. Zannad F, McMurray JJ, Krum H, Veldhuisen DJ, Swedberg K, Shi H. Eplerenone in patients with systolic heart failure and mild symptoms. New England Journal of Medicine 2011;364(1):11-21. [PMID: ] - PubMed
Zhang 2020
    1. Zhang Y, He D, Zhang W, Xing Y, Guo Y, Wang F, Jia J, Yan T. ACE inhibitor benefit to kidney and cardiovascular outcomes for patients with non-dialysis chronic kidney disease stages 3-5: a network meta‑analysis of randomised clinical trials. Drugs 2020;80(8):797-811. [PMID: ] - PMC - PubMed

References to other published versions of this review

Cross 2009a
    1. Cross NB, Webster AC, Masson P, O'Connell PJ, Craig JC. Antihypertensive treatment for kidney transplant recipients. Cochrane Database of Systematic Reviews 2009, Issue 3. Art. No: CD003598. [DOI: 10.1002/14651858.CD003598.pub2] - DOI - PMC - PubMed
Cross 2009b
    1. Cross NB, Webster AC, Masson P, O'Connell PJ, Craig JC. Antihypertensives for kidney transplant recipients: systematic review and meta-analysis of randomized controlled trials. Transplantation 2009;88(1):7-18. [MEDLINE: ] - PubMed
Risler 2002
    1. Risler T, Braun N, Bachmann F. Antihypertensive treatment for kidney transplant recipients. Cochrane Database of Systematic Reviews 2002, Issue 2. Art. No: CD003598. [DOI: 10.1002/14651858.CD003598] - DOI

MeSH terms

Substances

Associated data