Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug 27;43(8):114498.
doi: 10.1016/j.celrep.2024.114498. Epub 2024 Jul 30.

STAG2 mutations reshape the cohesin-structured spatial chromatin architecture to drive gene regulation in acute myeloid leukemia

Affiliations
Free article

STAG2 mutations reshape the cohesin-structured spatial chromatin architecture to drive gene regulation in acute myeloid leukemia

Alexander Fischer et al. Cell Rep. .
Free article

Abstract

Cohesin shapes the chromatin architecture, including enhancer-promoter interactions. Its components, especially STAG2, but not its paralog STAG1, are frequently mutated in myeloid malignancies. To elucidate the underlying mechanisms of leukemogenesis, we comprehensively characterized genetic, transcriptional, and chromatin conformational changes in acute myeloid leukemia (AML) patient samples. Specific loci displayed altered cohesin occupancy, gene expression, and local chromatin activation, which were not compensated by the remaining STAG1-cohesin. These changes could be linked to disrupted spatial chromatin looping in cohesin-mutated AMLs. Complementary depletion of STAG2 or STAG1 in primary human hematopoietic progenitors (HSPCs) revealed effects resembling STAG2-mutant AML-specific changes following STAG2 knockdown, not invoked by the depletion of STAG1. STAG2-deficient HSPCs displayed impaired differentiation capacity and maintained HSPC-like gene expression. This work establishes STAG2 as a key regulator of chromatin contacts, gene expression, and differentiation in the hematopoietic system and identifies candidate target genes that may be implicated in human leukemogenesis.

Keywords: CP: Cancer; CP: Molecular biology; Hi-C; RAD21; STAG2; acute myeloid leukemia; cohesin mutations; epigenetics; gene regulation; hematopoiesis; hematopoietic stem and progenitor cells; spatial chromatin structure.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

References

Publication types

MeSH terms